
Difference between this class and CS1 

 

Where as in CS I, we simply asked you to come up with 

solutions to problems and did not care about the quality of 

those solutions, in this class we will put more emphasis on the 

efficiency of solutions. To that end, we will study a number of 

different problem solving techniques and try to show the 

situations in which these techniques yield efficient solutions. 

 

In CS1, we briefly touched on several data structures including 

linked lists and binary trees. In this class we will reinforce 

those ideas from CS1 and add some detail. Generally, most 

students coming out of CS1 are not proficient enough to code 

up programs using linked lists and binary trees on their own. 

Hopefully, by the end of this class you will have the confidence 

to do so. Furthermore, we will learn about some new data 

structures, such as heaps and hash tables. 

 

In CS1 we very briefly introduced the idea of Big-Oh notation. 

In this class you will be given the actual definition of Big-Oh as 

well as some other complementary definitions. Furthermore, 

you will be asked to use this notation in the analysis of 

algorithms. Mathematically, the analysis will be more involved 

than the algorithms presented in CS1. 

 

Putting this together, here is a list of the three basic goals of 

this class: 

 

1) Coming up with efficient solutions to problems, utilizing 

several standard algorithmic techniques. 

2) A more detail understanding of several data structures to 

allow writing code using these data structures 

3) Proficient use of mathematics and Big-Oh notation so that 

the time efficiency of different algorithms can be compared. 

 



Algorithm Analysis 

 

Determining the exact amount of time an implementation of an 

algorithm will take to run is impossible. Different processors 

run and different speeds, and different architectures support 

different types of instruction sets, which may affect running 

time. These are just a couple of the many factors which could 

affect the actual running time of the implementation of an 

algorithm. 

 

Thus, rather than try to determine the exact running time of 

an algorithm, we will be happy to simply approximate the 

running time of an algorithm to within a constant factor. In 

particular, our assumption will be that the running time of an 

algorithm depends on the input size, and that roughly 

speaking, one could construct a function t(n) that is the 

running time of an algorithm when given an input of size n. 

 

Naturally, one of the difficulties you might notice here is that in 

reality, if you run an algorithm with two different data sets of 

the same size, it's quite possible that the algorithm will take 

different amounts of time running on each. Thus, we will make 

a distinction between worst case running time and average case 

running time. I'll explain this difference in a bit. For example, 

it's possible that an algorithm with input size n could take 2n+1 

steps sometimes, but 5n+5 steps other times. 

 

Since t(n), the running time of an algorithm with input of size 

n, can not be calculated exactly, we want to simply determine 

the function's Big-Oh value, or its largest  possible value within 

a constant. Thus, we would like to make claims such as t(n) = 

O(f(n)), where f(n) is some standard function. Once we 

determine this, then we'll say that the algorithm runs in O(f(n)) 

time and use this as a basis of comparison with other 

algorithms. 



Another way to think about algorithm analysis is trying to 

determine the approximate number of simple statements a 

program will execute. The hardware executes many simple 

instructions for a program to run. Relatively speaking, each of 

these instructions takes a small constant amount of time to run. 

From processor to processor, this constant amount of time is 

different, which accounts for the fact that the identical code 

run on two different machines may result in different running 

times. 

 

Often times, the number of small instructions a program 

executes is based upon the size of the input to the program. We 

can think of the following as simple instructions: 

 

Memory references 

Comparisons 

Arithmetic operations 

Function calls (just the calls themselves, not necessarily the  

                          body of the function) 

 

Assuming that these are simple constant time operations, we 

can also show that the following are constant time operations: 

 

assignment statement, (as long as there are no non-constant 

                time functions computed on the RHS.) 

if statement, (as long as the body takes a constant amt. of time) 

 

So, we can think of the goal of algorithm analysis as counting 

the number of simple operations a program implementing an 

algorithm will execute if run on an input of size n. When doing 

this, we will find that even this will be quite tedious. Thus, 

rather than finding the exact number of simple statements a 

program will execute, we will be happy finding a big Oh 

approximation for the total number of simple statements an 

algorithm will execute. 



Examples of Counting the Number of Simple Statements 

 

1) Consider the following code segment: 

 
for (int i=1; i<= 2*n; i++) 

  x = x + 1; 

 

In this segment of code, the simple statements/expressions   

 

 i <= 2*n x = x + 1;   and   i++ 

 

each run 2n times. Thus, the total number of simple statements 

run is approximately 6n + 1. Since we don't care about 

multiplicative constants, we can safely say that the running 

time of this segment of code is O(n). 

 

2) Consider the following segment of code: 

 
for (int i=1; i <= 3*n; i++) { 

  for (int j=1; j <= n/2; j=j+3) { 

    x = x + 1; 

  } 

} 

 

In this segment of code, the outer loop runs 3n times. The inner 

loop runs approximately n/6 times because only ever third 

value of j occurs in the iterations. Note that the value is 

approximate because of integer division and off by one issues. 

Also note that the number of times the inner loop runs is 

constant and not based upon the value of any variables. Thus, 

the statement x = x+1; runs approximately 3n(n/6) = n2/6 times. 

All of the other statements run this many times or less. Since 

we are ignoring multiplicative constants, the run time of this 

segment of code is O(n2). 

 



Code Analysis that Shows the Necessity of Some Math 

 

3) 

 
int j = n; 

while (j >= 1) { 

  for (int i=1; i<=j; i++) 

    x = x + 1; 

  j = j/3; 

} 

 

The inner loop runs j times, where j is first equal to n, then n/3, 

then n/9, etc. Technically, since integer division is done, the 

real number division values of n/3 and n/9 could be slight 

overestimates. Thus, the following sum represents an upper 

bound on the total number of times the statement x = x + 1; is 

executed: 

   

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Of course, with integer division, we know that the sum will not 

go to infinity. (It will end when i is equal to log3n, 

approximately.) 

 

As we see from this example, in order for us to determine the 

run time of this segment of code, ultimately, we are forced to 

deal with a summation.  

 

Thus, the major reason we will briefly cover mathematics at the 

beginning of the course is to assist us in algorithm analysis: 

counting the number of simple statements an algorithm will take 

and/or counting the amount of memory an algorithm will use if 

implemented. 



Handling the Sum in the Example Above 

 

Let S = 

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S     = 1 + 1/3 +  1/9 + 1/27  + … 

S/3 =    1/3  + 1/9 + 1/27 + … 

------------------------------------------------------------- 

S – S/3 = 1, which is obtained by subtracting the bottom  

                    equation from the top. 

S(2/3) = 1 

S = 3/2 

 

This summation above is an infinite geometric sum. The 

derivation for solving such a sum in general is very similar to 

the technique shown above. 

 

A general infinite geometric sum has a first term, let this be a1, 

and a common ratio between successive terms, let this be r. 

(Note that |r| < 1 to ensure that the series converges.) 

 

S     = a1 + a1r +  a1r2 + a1r3  + … 

rS   =    a1r +  a1r2 + a1r3  + … 

------------------------------------------------------------- 

S – rS = a1, which is obtained by subtracting the bottom  

                    equation from the top. 

S(1 - r) = a1 

S = a1/(1-r) 

 

(Here note that to obtain a subsequent term from a previous 

term in the sequence we just multiply be r. Thus, the third 

term is a1r2, and the fourth term is a1r3, etc.) 

 



Note that we can handle the sum of a finite geometric series of 

n terms similarly: 

 

S     = a1 + a1r +  a1r2 + a1r3 + …  + a1rn-1 

rS   =    a1r +  a1r2 + a1r3 + …  + a1rn-1 +  a1rn 

-------------------------------------------------------------------------- 

S – rS = a1  - a1rn 

S(1 - r) = a1(1 – rn) 

S = a1(1 – rn)/(1-r) 

 

(Here note that since the series is finite, there is one "extra" 

term on the second row, which is the result of multiplying a1rn-1 

by r. This term appears in the difference shown above.) 

 

 

Now that we've established the necessity of some mathematics, 

let's review some mathematical rules and proof techniques that 

will be necessary for us to use throughout the semester in our 

algorithm analysis. 



Mathematical Preliminaries 

 

Logs 

 

The log function is the inverse of an exponent. Thus, if we have 

 

ba= c, then it follows by definition that log b c = a. 

 

Since a positive number to any exponent can never be negative, 

and only logs with positive bases (except for 1) are computed, it 

follows that you can never take the log of 0 or any negative 

value. 

 

Let's review several rules that apply to logarithms and 

exponents. 

 

logba + logbc = logbac 

logba - logbc = logba/c 

logbac = clogba 

logba = logca/ logcb 

b^(logca) = a^( logcb) 

babc = ba+c 

ba/bc = ba-c 

(ba)c = bac 

 

One key observation here: Logarithms grow slowly.  210 = 1024 

(log 2 1024 = 10).  220 = 1048576   1x106  (log 2 1x106  20).  230 

= 1073741824  1x109 (log 2 1x109  30). This means that  the 

performance of an O(N log N) algorithm is much closer to that 

of an O(N) algorithm than an O(N2) algorithm, even for 

moderately large amounts of input. 

 

In general, any time we repeatedly halve or multiply a quantity 

in some way, a log is involved in the analysis. 

 



Summations 

 

By definition of a summation we have the following general 

form: 
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Here are a couple standard summations formulas we will use 

often: 
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Also, here is an example of a technique that works with some 

sums: 

 

Find 1(20) + 2(21) + 3(22) + ... + n(2n-1) 

 

Let S = 1(20) + 2(21) + 3(22) + ... + n(2n-1). Then  

     2S =             1(21) + 2(22) + 3(23) + ... + n(2n) 

 

Now, subtract the bottom equation from the top: 

 

-S = 1(20) + (21) + (22) + ... + (2n-1) - n(2n) 

S = n(2n) - ((20) +(21) + (22) + ... + (2n-1)) 

S = n(2n)  - 
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S = n(2n)  - (2n - 1)/(2-1)  = (n-1)2n + 1 

 


