
B-Trees (aka Multiway) 

 
A multiway tree is one where you can store more than one 

value in a node. Now the question becomes, if you can store 

more than one value in a node, how do you arrange subtrees? 

 

If a node contains k items, (let these be I1, I2, ... and Ik, in 

numeric order), then that node will contain k+1 subtrees. (Let 

these subtrees be S1, S2, ... and Sk+1.) In order to create a search 

tree with a reasonable order, we have to place constraints on 

the values stored in each subtree. In particular we have: 

 

All values in S1 are less than I1. 

All values in S2 are less than I2, but greater than I1. 

All values in S3 are less than I3, but greater than I2. 

... 

All values in Sk are less than Ik, but greater than Ik-1. 

All values in Sk+1 are greater than Ik. 

 

From this point on, if I refer to a subtree to the left of a value, 

Im, I am referring to the subtree directly to the left of the value, 

Sm. Also, I will refer to Sm+1 as the subtree to the right of Im. 

 

Here is an example of a multiway tree: 

 

     20, 40 

   /       |   \ 

  5, 8, 13, 17     30   50, 70, 80 

         /       |     \                /                        /     |      |     \ 

       2       10   14       22, 25       43    60   71   81,87 

 

 

 

 



2-4 Trees 

 
A 2-4 Tree is a specific type of multitree. Here are the 

specifications for a valid 2-4 Tree: 

 

1) Every node must have in between 2 and 4 children. (Thus, 

each internal node must store in between 1 and 3 values.) 

 

2) All external nodes (the null children of leaf nodes) have the 

same depth. (This does imply that all leaf nodes have the same 

depth as well.) 

 

Here is an example of a 2-4 Tree: 

 

     10,20,30 

    / /     \       \ 

         3,7      15          22,28    40, 50, 60 

      /   |  \      /  \         /  |   \       /   /     \     \ 

     1  5  8   12  17  21  26 29 35  45   55   65,70 

 

In a normal 2-4 Tree insert, compare the value to insert, (4 in 

this example) to the values in the root node. Based upon which 

two values the new value to insert falls in between, insert the 

item into the appropriate subtree. This is less than 10, so it 

must go into the subtree to the left ot 10. Using the same logic, 

we will insert the value in the subtree to the right of 3: 

 

10,20,30 

    / /     \       \ 

         3,7      15          22,28    40, 50, 60 

    /    |  \      /  \         /  |   \       /   /     \     \ 

   1  4,5  8 12  17  21  26 29 35  45   55   65,70 

 

 



 

Problems with Insert 

 
Now the problem with this insert method is that the node that a 

value gets inserted in may already be full (contain 3 values 

already.) Now, we could just insert the value into a new level of 

the tree, but the problem with this is that not ALL of the 

external nodes will have the same depth after this. Instead, 

what we will do is attempt to push a value up to the parent of 

the inserted node. Consider inserting 18 into the following tree: 

 

      10, 20 

     /      |  \ 

         3, 7      13,15,17 22 

 

Initially, we'd have the following situation: 

 

10, 20 

     /      |  \ 

         3, 7   13,15,17,18 22 

 

Now, the idea here is that you can take a value from the 

overloaded node and send it to the parent. You can send either 

of the middle values. The default convention is to send the 

third value: 

 

10,17, 20 

     /    /   \ \ 

         3, 7   13,15      18 22 

 

When you send this value up, you will have "split" the other 

three values into two different node groups. This allows for the 

proper number of children and fixes the situation. 

 



 

Other Problems with Insert 

 
In the situation above, the parent node was able to "accept" 

the 17. However, consider a parent node with three values in it 

and a similar insert (12): 

 

10,20, 30 

     /    /   \ \ 

         5      11,14,17   25 32,37 

 

Initially, we have: 

 

10,20, 30 

     /    /     \     \ 

         5   11,12,14,17   25     32,37 

 

Then, using the rule stated above, we have: 

 

10,14, 20, 30 

     / /      |     \     \ 

         5   11,12,   17   25     32,37 

 

Now, this looks like a mess: too many parent nodes and 

subtrees!!! 

 

We'll just have to repeat the process discussed above on the 

new node that has overflowed. (A node overflows when a 4th 

value is inserted into it.) Luckily, it's a simple matter to 

rearrage each sub tree as necessary. (This is because whether 

we "add" another level to the tree or not, the number of 

"gaps" between existing nodes stays the same.) 

 

 



 

       20 

            /         \ 

10,14          30 

            /     |    \      /    \ 

                  5  11,12 17   25   32,37 

 

Thus, the way in which a 2-4 Tree changes in height is when an 

insert propagates an overflowed element all the way to the top 

node of the tree. This propagation can stop at any level of the 

tree and is simply dictated by the number of nodes in each 

ancestor of the initially inserted node. 

 

Here is one more example: 

 

      50 

     /  \ 

          25  70, 90 

         /  \          /    |      \ 

       20    27       60   80    91, 93, 94  

 

Insert 99: 

 

50 

     /  \ 

          25  70, 90, 94 

         /  \          /    /      \        \ 

       20    27       60  80  91,93    99 



Implementation Ideas 

 
1) Each node is represented by 2 arrays: 

 a) An array of values 

 b) An array of references to Nodes. 

 

2) Each node stores 

 a) A linked list of values 

 b) A linked list of references to Nodes. 

 

Advantage of the first design: 

 

1) Easier to access each item in a node and modify values in a 

node. 

 

 

Advantage of the second design: 

 

1) Never have extra values or references stored in a node. 


