Standard Output in Java

printf in C is analogous to the print method in Java. This method resides in the System class. That is why the full method call is:

System.out.print("This is a sentence.");

The other version of this method is the println method. The only difference between print and println is that println advances the cursor to the next line, namely, it adds a '\n' to the output stream at the end.
Thus, the following three statements:

System.out.print("Roses are red,");

System.out.println(" violets are blue,");

System.out.println("This poem is as good as new.");

would produce the following output:

Roses are red, violets are blue,

This poem is as good as new.

If we have a simple print or println, (one that only takes in a single string literal in quotes), then whatever is within the double quotes will get printed exactly, (except for escape sequences which will be discussed shortly.)

However, Java deals with printing out the values of variables a bit differently than C and other languages you are used to.

Method Overloading

When ever a operator or a method is overloaded, that means that it is multiply defined to take in different TYPES (and sometimes numbers) of parameters.

You are used to the + sign being overloaded already. It is essentially a function with two parameters that returns the sum of those parameters. But, when you use it, you can use it on two ints or two doubles. Imagine writing functions in C for both. The prototype for those functions would be:

int add(int x, int y);

double add(double x, double y);

So a natural question becomes: if a function add is multiply defined, how does the computer decide which one to use?

Answer: When a function call is made, the type of each parameter is evaluated. A requirement of overloaded functions is that the types of the parameters must be different. Thus, the compiler simply finds the add function that matches the parameter types exactly.

We will deal with overloaded methods in Java later. For now, just remember that you are allowed to define two methods with the same name provided that their parameter lists are not identical. The compiler then chooses which function to run based on the types of the actual parameter passed to the function.

Overloading of the + operator in Java

In Java, the + operator is ALSO defined as a string concatenation operator. (String concatenation means to put two strings together. For example, "Hello "+"World" equals "Hello World". The rule is as follows:

If EITHER operand to a + sign is of type string, then the operation that gets executed is string concatenation and NOT addition. Otherwise, if neither operand is a string, an addition is performed.

How does string concatenation work when one of the operands is NOT a string?

Java has a method called toString that is generally defined for each class, including the wrapper classes, which I'll mention in just a little bit. This method converts an object into a meaningful String object. Even though primitive variables are not objects - the toString function exists in their corresponding wrapper classes. This is the function that is invoked to convert any primitive into a String. Thus, when one operand of a + operator is not a String, it is converted to a string using the appropriate toString method.

Finally, remember that expressions in Java, just like most other languages are evaluated left to right.

Now that I have completely described the mechanics of string concatenation, let's look at a few examples:

System.out.println("Hello " + "World!");

Output:

Hello World!
System.out.println("Answer = " + 7);

Output:

Answer = 7

System.out.println(3+4);

Output:

7

System.out.println(3+4+"= 7");

Output:

7=7

System.out.println("3+4="+3+4);

Output:

3+4=34

System.out.println("3+4="+(3+4));

Output:

3+4=7

I will show you more examples once I introduce variables.

Escape Sequences

These work just as they do in C and C++. There's a list in the book on page 51. Here it is:

Escape Sequence
Meaning

Esc. Seq.
Meaning
\b

backspace
\t

tab

\n

newline

\r

carriage return

\"

double quote
\'

single quote

\\

backslash

Primitive Data Types in Java

Some of this list should look familiar to you:

Type

Storage

Range

byte

8 bits

-128 to 127

short

16 bits

-32768 to 32767

int

32 bits

-2147483648 to 2147483647

long

64 bits

-9223372036854775808 to 9....7

float

32 bits

-3.4e+38 with 7 sig figs

double
64 bits

-1.7e+308 with 15 sig figs

char

16 bits

unicode 0 to 65536

boolean
8 bits

true or false

The underline types are the ones that you are more likely to use for this particular class. C does not have an explicit boolean type but Java does. This helps readability. The words true and false (in lowercase) are reserved words in Java. Here is a short example of how to use them:

if (done == true) ... //where done is a boolean variable

For our purposes, you can simply use ints and doubles for all arithmetic computations in your programs unless you are explicitly told otherwise.

Arithmetic expressions and assignment statements work the same in Java as in C. Here is a small list of operator precedence:

1) Unary plus or minus

2) multiplication, division, and mod

3) addition, subtraction and string concatenation

4) assignment statement

Quick Review of / and %

Remember when both operands are integers, / performs integer division. This simply truncates your answer. So whatever your answer is if you use floats, just get rid of the decimal part. Thus, -11/3 is -3 and 5/4 is 1, for example.

The % operator simply computes the remainder of dividing the first operand by the second. If the first operand is negative then the answer will also be negative (or zero). If the first operand is positive, then the answer will also be positive (or zero.) Here are a few examples:

11%3 is 2

11%-3 is 2

-11 % 3 is -2

-11 % -3 is -2

If you are at all unsure how these work, please try a few out on your own, compile and run them. (This is as easy as running a program with the statement System.out.println(-11%-3);)
Comparing Floats/Doubles
Sometimes when checking equalities between floats or doubles, a better way to do it is check the absolute value of the difference between two floats or doubles:

double d1, d2;

...

if (Math.abs(d1 - d2) < 0.00001)

instead of

if (d1 == d2)

The reason being that the expression d1==d2 will only be true if the internal binary representations of d1 and d2 are exactly alike. It's possible due to roundoff error that this may not be the case but d1 and d2 SHOULD be equal. (Kind of like when you do an operation on your calculator and get 7.99999999 when you really know that mathematically you should have gotten 8.)

In my experience, this usually isn't a problem. But, I have had it happen to me before.

Data Conversion

If you have statements with mixed types of data, sometimes the types of some values are converted automatically. Here are the types of conversions possible:

1) assignment conversion

2) overflow, underflow

3) arithmetic promotion

4) casting

Assignment conversion

Example:

int dollars;

double money;

money = dollars;

In this example, even though money and dollars are not the same type, the assignment is allowed. What occurs is that the integer value of dollars is converted to an equivalent double value. Since this is a widening conversion (one where no data is lost), it is allowed. The opposite, a narrowing conversion as indicated by the assignment statement

dollars = money;

would not be allowed in Java. This produces a syntax error.

Usually narrowing conversions are not allowed (without a cast), but there are a few instances they are, such as:

char b = 5*5;

Overflow/Underflow

Sometimes, a calculation will produce a value that can NOT be stored in the desired data type. In these instances, a result will be calculated, but it will be inaccurate. Try the following:

int biggestInt = Integer.MAX_VALUE;

System.out.println(biggestInt+1);

Arithmetic Promotion

In any arithmetic operation dealing with two different type operands, a promotion is temporarily done to execute the operation. Here is an example:

int a;

double x;

System.out.println("Answer = "+(x+a));

When this statement is executed, while x+a is being evaulated, a is temporarily converted to an equivalent double. But, after the statement, a remains an integer.

Casting

You can also force an expression to act as a different type temporarily during a statement using a cast. Consider the following statements:

int sum, num;

double avg;

...

avg = (double)sum/num;

Even though sum is an integer, temporarily, for the sake of evaluating the division(/), it will act as a double. This in turn invokes a floating pt. division instead of an integer division. Once again, after the statement, sum remains an integer.

Declaring Constants

Here is how you can declare a constant:

final static double PI = 3.1415926535;

These can be declared outside any method, in the beginning of the class and will be valid all within the class.

The key word final indicates that the value can not change after it's set.

Static indicates that the constant is NOT part of an object. (This will make more sense later.)

double is the type of the constant and PI is the identifier name. (Note: There is a PI defined in the Math class.)

Standard Input in Java
Technically, in order to read in input, you need to use objects. The general process of using objects will be discussed two lectures from now. However, just so we can look at some programs that "do something" I will quickly introduce input in Java.

One way to read input in Java utilizes a Scanner object. You need to create only one Scanner object in a method in order to read input throughout that method. In our examples today, we will only have one method in our programs, main. Thus, in each example, we will create our Scanner object near the beginning of main as follows:

Scanner stdin = new Scanner(System.in);

stdin is just the variable name, so technically you can call it anything you want. new is a keyword that invokes the constructor; we'll talk about this next lecture. (Basically, the constructor creates the object.) System.in is the actual parameter to the constructor and basically just says to create stdin to read from the keyboard.
Once we have executed this line and created our Scanner object stdin, we are ready to use it to read in data from the keyboard.

Here is how we can read in an integer:

int number = stdin.nextInt();

We call methods on objects, and nextInt() is a method that can be called on a Scanner object. It takes in no parameters, and it takes in no parameters and it reads the next integer from the stream that stdin is referring to and returns it. We then take this return value and store it into an integer variable. (If we had previously declared the integer variable, then we would omit the "int" in the front of the line.)

Similarly, here are the names of the methods to read in Strings and doubles:

// Returns the next String in the stream

next();

// Returns the next double in the stream

nextDouble();

We will look at Strings in more detail two lectures from now. For now, we will look at examples that only read in ints and doubles.
