Invoking Class Methods (Static)

Sometimes methods inside of a class are NOT specific to an object of the class, but simply pertain to the class itself. In order to call these methods, you do NOT need to call them on an object of the class. Rather, you may call them simply my specifying the class in which they reside.

For example, here are the prototypes of some methods from the Math class, (which is part of the java.lang package.)

static int abs (int num);

static double cos(double angle);

static double ceil(double num);

static double exp(double power);

static double pow(double num, double power);

static double random();

static double sqrt(double num);

Since these methods are static they do not need to be called on an object of the class. Instead, they are called by the class, as follows:

Classname.method(<parameters>)

Here is an example:

System.out.println("The square root of 15 is "+Math.sqrt(15));

All of these methods do NOT operate on an object, but rather carry out some generic task, (like a C function.)

Also, note that all trig functions deal with angles in radians.

Math Class Example: Quadratic Formula

import java.util.*;

public class Quadratic {

 public static void main(String[] args) {

 Scanner stdin = new Scanner(System.in);

 double a, b, c;

 System.out.println("Enter a.");

 a = stdin.nextDouble();

 System.out.println("Enter b.");

 b = stdin.nextDouble();

 System.out.println("Enter c.");

 c = stdin.nextDouble();

 double disc = Math.pow(b,2) - 4*a*c;

 if (disc < 0)

 System.out.println("Complex Roots!");

 else {

 double r1 =(-b+Math.sqrt(disc))/(2*a);

 double r2 =(-b-Math.sqrt(disc))/(2*a);

 System.out.println("Roots are " +

 r1 + " and " + r2 + ".");

 } // end-if-else

 } // end main

} // end class Quadratic
Reading Input from a File

This is VERY, VERY similar to reading in input from the keyboard. You will still use a Scanner object. But, you must call it with a different constructor:

Scanner fin = new Scanner(new

 File("input.txt"));

In particular, the input to the Scanner constructor must be a File object. This File object can be created immediately, by calling the File constructor that takes in an input file by its actual filename stored as a String.

From this point on, all data from the file can be read using regular Scanner class methods we learned. The only difference is that when a Scanner method is called, the program won't be "waiting" for the user to input the data, it will just read the next token from where it left off in the file. To close a file, do the following:

fin.close();

In the example on the following page, the user is prompted for the name of a file containing test scores. The first line in the file will contain a positive integer n, representing the number of scores in the file. The following n lines will contain one integer each, representing a single test score. The program on the next page will open this file, read in the values and calculate the average score of all the tests and output that to the screen.

Example: Reading Test Scores from a File

public class Tests {

 public static void main(String[] args) {

 Scanner stdin = new Scanner(System.in);

 System.out.println("Enter file.");

 String filename = stdin.next();

 Scanner fin = new Scanner

(new File(filename));

 int numvals = fin.nextInt();

 double sum = 0;

 for (int i=0; i<numvals; i++)

 sum += (fin.nextInt());

 if (numvals <= 0)

 System.out.println("No scores.");

 else

 System.out.println("Avg = " +

 (sum/numvals) + ".");

 fin.close();

 }

}
Writing Output to a File

This is also similar to standard output, except that you have to set up a PrintStream object. (System.out is already taken care of for you.) Here is the type of call to the constructor of PrintStream that is necessary:

PrintStream fout = new PrintStream

 (new File("output.txt"));

This opens a new file "output.txt" to write to. To write to the designated file, just use the PrintStream object created and the methods in the PrintStream class, such as println, print and printf:

fout.println("First line of the file.");

When you are done writing to the file, it should be closed as follows:

fout.close();

The example on the following page reads in a file with the same format as the previous example, and writes out a new file in the same format with a adjusted scores for all scores in the file using the following formula:

(New Score) = (int)[50 + .5*(Old Score)]

Example: Writing out Adjusted Test Scores

public class Tests2 {

 public static void main(String[] args) {

 Scanner stdin = new Scanner(System.in);

 System.out.println("Enter file.");

 String file1 = stdin.next();

 Scanner fin = new Scanner

 (new File(file1));

 System.out.println("Enter outfile.");

 String file2 = stdin.next();

 PrintStream fout = new PrintStream

 (new File(file2));

 int numvals = fin.nextInt();

 fout.println(numvals);

 for (int i=0; i<numvals; i++) {

 double newscore = 50+.5*fin.nextInt();

 fout.println((int)newscore);

 }

 fin.close();

 fout.close();

 }

}
