COP 3330 Exam #1 Review

Date: 2/13/07

Time: 4:30 – 5:45pm

Place: CSB – 101

Reading Covered

Chapter
Sections

Topics
two

2.1 - 2.6

Output, Variables, Primitives,

Assignments, Basic Programs

three
3.1 - 3.6

Classes and Objects, String class

four

4.1-4.4

Class Basics

five

5.1-5.7

if statement

six

6.1-6.6

loops

seven
7.1-7.3

static, parameter passing, this

eight

8.1-8.2

1-D Arrays

extra stuff

Math class, Random class

How to study:

1) Go through both of your programs. Make sure you understand how they work. I may ask questions based on your homework assignments.

2) Look over all of the sample programs posted on the course web page dated 1/9/07 – 2/6/07.

2) Read the class notes. Make sure you understand the ideas presented. Note: These have been added and edited recently, so please look at the again. Also, I have yet to edit the array notes but will do so on Friday, 2/9.

3) Read the sections denoted above.

4) Peruse the problems at the end of the appropriate chapters in the text and plan out how you would attack them.

Exam Format

The exam will be open book and be in two separate parts:

(1) Part I: Multiple Choice – 20 questions worth 40 points of the exam grade. (30 minute time limit)

(2) Part II: Free Response – several questions worth 60 points of the exam grade (45 minute time limit)

Here are the different types of questions I will have:

1) Tracing: Either through code segments or of an entire program that uses a class.

2) Writing: You may have to write a main method that uses a class, or write class methods.

3) You may have to find mistakes in a piece of code.

4) Short Answer: Some of the reading goes over general concepts in fairly non-technical manner. I may ask questions on this material that require a single sentence answer.

As with all of my exams, some problems may require math from algebra I or II. I wouldn't study this specifically, but it's more for your information.

Program Basics

All java code resides in classes. Only code from the main method of a class gets executed.

The most basic java program resides in a single class that only contains a main method. Here is the layout:

public class Test {

 public static void main(String[] args) {

 ...

 }

}

The name of the file storing a class should be the classnmame dot java. The above class should be stored in the Test.java file.

In order to run a java file, one must first compile it. If the program contains no errors, the java compiler will create a corresponding class file, (in this case, Test.class.) In essence, this file contains JVM instructions, which are sort of like assembly language. In order to run a Java program, you must "interpret" a class file. On the command line you would type, "java Test", then your program will execute.

In a simple program, here are some of the standard java statements:

1) Declaration of variables

2) Assignment Statements

3) Creation of objects and calling predefined methods on them

Within statements, you need to know the mechanics of the following:

1) Arithmetic Expressions

2) Boolean Expressions

Make sure you know the primitive types in java:

byte, short, int, long, float, double, char, boolean

Make sure you know basic precedence rules(*/ above +-, && above ||, and unary ops are higher than either). Whenever you write code, simply parenthesize expressions accordingly.

You may be asked to write or trace through code that uses String objects, a Random object, or Math class methods. You will be given the prototypes for each method called in the trace, or for each method you may need to call in code you write.

Biggest thing to remember about the String class:

Most of the methods return String objects. All of the methods leave the String object they are called upon unchanged.

Random class: Once you create a Random object, you can call the nextInt method anytime you want a random integer created, or nextDouble anytime you want a random real number in between 0 and 1.
Boolean Expressions

Java is different than C in that there is a boolean type. Thus boolean expressions included in ifs and whiles, etc. can only be of type boolean, so you can't have arithmetic expressions for boolean expressions in any control structure.

Make sure you know how && and || work, and how to parenthesize boolean expressions.

Arithmetic Expressions

They are the same as it C. The two that are somewhat tricky are integer division and mod(%)

Control Structures

Know how to trace through each of the following control structures:

1) if and all variations

2) switch

3) while

4) for

5) do

String Class
The documentation of this class is in your book, so since the exam is open book, make sure you know how to read this documentation.

In particular, remember that the String class is peculiar because technically String objects are not mutable. Once a String object is created, it can not be changed. Rather, all of the String methods create new String objects with the necessary modifications, and return references to those String objects.
Furthermore, remember that the variable name for a String (and all non-primitives) is just a reference and not the object itself. Thus, a statement like:

word1 = word2;

where word1 and word2 are both Strings does NOT copy the contents of word2 into word1, but just makes word1 REFERENCE the same object that word2 is referencing.

Here are some common String methods:

String(String str);

char charAt(int index);

int compareTo(String str);

String concat(String str);

boolean equals(String str);

boolean equalsIgnoreCase(String str);

int length();

String replace(char oldChar, char newChar);
Defining Classes
Remember when you are defining a class, you need to define two parts:

1) instance variables (these dictate the structure of an object

 of the class.)

2) instance methods (these dictate what operations are allowed

on an object of the class.)

Generally instance variables are private, and all methods you want others to use are public. Other methods, such as the totalminutes method in the Time class need not be public.

Remember that there are three types of variables you could have when dealing with instance methods:

1) instance variables

2) formal parameters

3) local variables

Learn the difference between the three and do not call different types of variables with the same name.

Remember that anytime you refer to an instance variable in an instance method, you are referring to the instance variable OF the object the method was called upon.

Formal parameters are the information the method needs to complete it's task.

Local variables are declared as necessary, such as loop indexes.

Constructors
The job of a constructor is to initialize an object of the class. Unlike C where you have to specifically allocate space for the object with a malloc call, (or something similar), java takes care of finding the appropriate memory automatically. All you have to do is initialize the components of the object.

All constructors are public and must be named the same thing as the class. A constructor in the Time class has the signature:

public Time(int h, int m);

One important thing to keep straight in a constructor is the order of the assignment statements. In particular, the instance variables need to be assigned, so these need to be on the left-hand side and the formal parameters need to be on the right.

Constructors are often overloaded, meaning that there are multiple ones defined with different parameter lists. The one instantiated depends on the number and types of the actual parameters. A default constructor is one that takes in no parameters.

toString
The following method is defined in the Object class:

public String toString();

It is frequently overridden in user-defined classes. The reason for this is as follows:

Anytime someone tries to print out an Object, what java automatically does is call toString() on that Object and just prints out what that method returns. Thus, if t is a time object and you run

System.out.println(t); //You are implicitly running

System.out.println(t.toString());
static vs. instance
static means, “belongs to the class.”

instance means, “belongs to the object.”

An instance method MUST BE called on an object of that class.

A static method is always called CLASSNAME.method(<parameter list>); because it just belongs to the class and does NOT operate on any object inherently.

An instance variable belongs to the object, whereas only one copy of a static variable ever exists, regardless of how many objects of a class are instantiated.

Visibility modifiers
For right now, we are only using two of them:

Private: Accessible only inside of the class.

Public: Accessible anywhere.

Usually, instance variables are private while most instance methods are public. The goal here is to hide the representation of the data from the user. The public methods are the only means by which the user can manipulate objects they create. We can restrict the types of operations the user can perform by restricting the public methods we give them access to.

Parameter Passing

All primitives are pass by value in Java while all non-primitives are pass by reference. Thus, a method always affects an object directly when that object is passed into the method, while a copy of primitive data is made that is local to a method.

this

When writing code inside of an instance method of a class, this refers to the current object, which is the object upon which the method was originally called.
Arrays

We looked at one dimensional arrays in Java. Arrays in Java are always allocated dynamically:

int[] values = new int[10];
for example. The rules for accessing elements, etc. are the same as C. The same common errors that people commit in C occur in Java.
