If statement revisited

This works the same as in C. Here is the general syntax:

if (<bool exp1>) {

stmts1;

}

else if (<bool exp2>) {

stmts2;

}

...

else {

stmtsn;

}

This gets evaluated exactly as it does in C. The key difference here is that Java has a boolean type. Thus, it is illegal in Java to have an if statement such as the following:
if (value = 1) {

 System.out.println("I forgot two equal signs!");

}

Also, it would be illegal to have the following:

if (1) {

 System.out.println("This would always print in C.");

}

Instead, we could do:

if (true) {

 System.out.println("This would always print in Java.");

}
While Statement revisited
This works the same as in C. Here is the general syntax:

while (<bool exp>) {

stmt1;

stmt2;

…

stmtn;

}

As before, you evaluate the boolean expression, if it's true, do all of the statements inside the curly braces in order. Then, check the boolean expression again. When the boolean expression is false, exit out of the loop immediately, jumping to the statement after the end of the curly brace for the end of the loop.

Once again, a valid boolean expression must be used.

Here is an example of some code using a while loop:

Scanner stdin = new Scanner(System.in);

boolean done = false;

int score = 0;

while (!done) {

 System.out.println("Enter your test score.");

 score = stdin.nextInt();

 if (score >= 0 && score <= 100)

 done = true;

 else

 System.out.println("Sorry, that score is not valid.");

}

For statement revisited

for (init stmt; bool exp; inc stmt) {

 stmt1;

 stmt2;

 ...

 stmtn;

}

This also gets evaluated exactly as it does in C. One difference is that you are allowed to declare a variable in the initialization statement like so:

int sum = 0;

for (int i=0; i<10; i++) {
 sum = sum + i;

}

In this situation, i is declared right before the loop begins and is "valid" right until the point the loop terminates. Technically, this for loop code is interpreted in the compiler as follows:

int sum = 0;

{

 int i;

 for (i=0; i<10; i++) {

 sum = sum + i;

 }

}

Now that we are able to declare variables anywhere in a method, it's important to note the proper scoping rules: A variable is valid from the point it is declared to the nearest end brace that corresponds to the nearest curly brace before it was defined.
Do – While Loop Revisited
This works the same as in C. Here is the general syntax:

do {

stmt1;

stmt2;

…

stmtn;

} while (bool exp);

Here, you execute all the statements in the block of statements. Then, check the boolean expression. If it's true, then go back to the top of the structure and execute the whole block of statements again, and repeat the whole process. If not, go to the next statement after the block is over.

Once again, a valid boolean expression must be used.

Here is an example of some code using a while loop:

Scanner stdin = new Scanner(System.in);

int score = -1;

do {

 System.out.println("Enter your test score.");

 score = stdin.nextInt();

 if (score < 0 || score > 100)

 System.out.println("Sorry, that is not a valid score.");

} while (score < 0 || score > 100);
A Brief Introduction to Static Methods
A static method is very similar to a regular C function. First, let's cover how to call a static method. The syntax is as follows:

Class_Name.Method_Name(Actual Parameters)

Unlike C, we typically specify the class in which a method is from. The rest of the method call is the same. We use the name of the method (after the dot), and then we have parentheses. Finally, we list each actual parameter, separated by commas.

Some of the most frequently used static methods are in the Math class. Here is a listing of a few of those methods and an example that uses a couple of them:

// Returns the absolute value of double value n.

public static double abs(double n)

// Returns mn.
public static double pow(double m, double n)
// Returns the positive-valued
[image: image1.wmf]n

.

public static double sqrt(double n)

import java.util.*;

public class Quadratic {

 public static void main(String[] args) {

 Scanner stdin = new Scanner(System.in);

 double a, b, c;

 // Get the input from the user.

 System.out.println("Enter a.");

 a = stdin.nextDouble();

 System.out.println("Enter b.");

 b = stdin.nextDouble();

 System.out.println("Enter c.");

 c = stdin.nextDouble();

 // Calculate the discriminant.

 double discriminant = Math.pow(b,2) - 4*a*c;

 // Complex root case.

 if (discriminant < 0)

 System.out.println("Your quadratic has complex roots.");

 // Real root case.

 else {
 double r1 = (-b + Math.sqrt(discriminant))/(2*a);

 double r2 = (-b - Math.sqrt(discriminant))/(2*a);

 System.out.println("The roots to your quadratic are " + r1 + " and " + r2 + ".");

 }

 }
}
How to Write a Static Method
Here is how we will lay out a static method:

public static <ret_val> method_name(parameter list) {
}

In C Programming last semester, we looked at an example of a function that calculated the square root of a positive number. Here is how we would implement that function as a static method in Java:

final static double epsilon = 0.0001;

public static double mysqrt(double x) {

 if (x > 0) {

 double guess = 1;

 while (Math.abs(x – guess*guess) > epsilon)

 guess = (guess + x/guess)/2;

 return guess;

 }
 return -1;
}

Consider this method being added to prime2.java. In this program, we list all of the prime numbers from 2 to 100. Technically, to check if a value is prime, we just have to divide it by each number upto the square root of the value being test. We can improve the efficiency of our code by just checking these values, calling this square root function. (The method should be included in the class, separate from main.)
public class prime2 {

 final static double epsilon = 0.0001;

 public static void main(String[] args) {

 boolean firstval = true;
 System.out.print("Prime numbers in between 2 and 100:");

 for (int tryval=2; tryval<=100; tryval++) {

 boolean prime = true;

 for (int trydiv=2; trydiv <= prime2.mysqrt(tryval) +
 epsilon; trydiv++) {

 if (tryval%trydiv == 0) {

 prime = false;

 break;

 }

 }

 if (prime) {

 if (firstval) {

 System.out.print(tryval);

 firstval = false;

 }

 else

 System.out.print(", "+tryval);

 }

 } // end for tryval

 System.out.println(".");

 } // end main

} // end class

_1230477440.unknown

