COP 3330 Final Exam Review

DATE: April 26. 2007 (THURSDAY)

TIME: 4 – 7 PM

PLACE: CSB 101

I. The Basics (Chapters 2, 5, 6)

a. comments


b. identifiers, reserved words


c. white space


d. compilers vs. interpreters


e. syntax, semantics


f. errors



i. syntax



ii. run-time



iii. logic


g. primitive data types


h. arithmetic expressions

         i. I/O – both standard and file


j. boolean expressions


k. control structures

II. Using Classes (Chapter 3 and Class Handouts)

a. How to create an object


b. How to call methods on objects


c. String class


d. Scanner class


e. Math class


f. Random class  

III. Arrays (Chapter 8: 8.1-8.5, 8.8)

a. syntax


b. dynamic allocation

c. how to access an element


d. use with a for loop



e.  two-dimensional arrays

IV. Collections (Chapter 8: 8.9-8.11)

         a. ArrayList

         b. Vector

         c. Collections methods
V. Defining classes (Chapter 7)

a. Instance variables


b. Constructors


c. Instance methods


d. Difference between static and instance

e. private, public

f.  this


g. difference between formal parameters&instance vars


h. Scoping Rules


h. all object names are REFERENCES!!!

         i. overloading methods

         j. overriding methods

         k. instanceof operator


l. generic classes
VI. Inheritance  and Polymorphism (Chapter 9)

a. defining extra instance variables


b.  polymorphism


c. overriding methods


d.  super (in constructors)


e.  super (for other methods)


f.  visibility modifiers


g. late binding

h. final classes


i.  interfaces


j.  abstract base classes

VII. Exceptions ( Chapter 10 )


a. Don't handle it


b. Handle where it occurs (try-catch)


c. Handle later (throw)

d. Creating an Exception

VIII. UML Class Diagrams ( Notes )

         a. Three parts of each box


b. visibility modifiers, parameters, etc.

         c. is-a relationship (inheritance)
         d. has-a relationship (aggregation)
IX. Testing and Debugging
         a. Driver Programs


b. Stub Functions


c. Reviews and Inspections


d. Black-Box Testing


e. White-Box Testing


f. Integration and System Testing


g. Debugging Tips and Techniques

EXAM AIDS: THE EXAM IS OPEN BOOK. PLEASE BRING YOUR BOOK TO THE EXAM.
How to study:

1) Go through both of your programs. Make sure you understand how they work. I may ask questions based on your homework assignments.

2) Look over all of the sample programs presented in class. For this semester, these contain a more thorough breakdown of the material covered in class than the notes.

2) Read the class notes. Make sure you understand the ideas presented.

3) Skim the chapters we have covered this semester.

4) Peruse the problems at the end of the appropriate chapters in the text and plan out how you would attack them.

Exam Format

Here are the different types of questions I will have:

1) Tracing: Either through code segments or of an entire program that uses a class.

2) Writing: You may have to write a main method that uses a class, or write class methods.

3) You may have to find mistakes in a piece of code.

4) Short Answer: Some of the reading goes over general concepts in fairly non-technical manner. 

5) Design Question: I may give you the basic idea of a class to be written and then ask you general questions about the design of the class. I may ask you to draw an UML diagram.

Program Basics

All java code resides in classes. Only code from the main method of a class gets executed.

The most basic java program resides in a single class that only contains a main method. Here is the layout:

public class Test {

     public static void main(String[] args) {

     ...

     }

}

The name of the file storing a class should be the classnmame dot java. The above class should be stored in the Test.java file.

In order to run a java file, one must first compile it. If the program contains no errors, the java compiler will create a corresponding class file, (in this case, Test.class.) In essence, this file contains JVM instructions, which are sort of like assembly language. In order to run a Java program, you must "interpret" a class file. On the command line you would type, "java Test", then your program will execute.

In a simple program, here are some of the standard java statements:

1) Declaration of variables

2) Assignment Statements

3) Creation of objects and calling predefined methods on them

Within statements, you need to know the mechanics of the following:

1) Arithmetic Expressions

2) Boolean Expressions

Make sure you know the primitive types in java:

byte, short, int, long, float, double, char, boolean

Make sure you know basic precedence rules(*/ above +-, && above ||, and unary ops are higher than either). Whenever you write code, simply parenthesize expressions accordingly.

You may be asked to write or trace through code that uses String objects, a Random object, or Math class methods. You will be given the prototypes for each method called in the trace, or for each method you may need to call in code you write.

Biggest thing to remember about the String class:

Most of the methods return String objects. All of the methods leave the String object they are called upon unchanged.

Random class: Once you create a Random object, you can call the nextInt method anytime you want a random integer created.

Boolean Expressions

Java is different than C in that there is a boolean type. Thus boolean expressions included in ifs and whiles, etc. can only be of type boolean, so you can't have arithmetic expressions for boolean expressions in any control structure.

Make sure you know how && and || work, and how to parenthesize boolean expressions.

Arithmetic Expressions 

They are the same as it C. The two that are somewhat tricky are integer division and  mod(%)


Control Structures

Know how to trace through each of the following control structures:

1) if and all variations

2) switch

3) while

4) for

5) do

Defining Classes
Remember when you are defining a class, you need to define two parts:

1) instance variables (these dictate the structure of an object





  of the class.)

2) instance methods (these dictate what operations are allowed





on an object of the class.)

Generally instance variables are private, and all methods you want others to use are public. Other methods, such as the totalminutes method in the Time class need not be public.

Remember that there are three types of variables you could have when dealing with instance methods:

1) instance variables

2) formal parameters

3) local variables

Learn the difference between the three and do not call different types of variables with the same name.

Remember that anytime you refer to an instance variable in an instance method, you are referring to the instance variable OF the object the method was called upon.

Formal parameters are the information the method needs to complete it's task.

Local variables are declared as necessary, such as loop indexes.

Constructors
The job of a constructor is to initialize an object of the class. Unlike C where you have to specifically allocate space for the object with a malloc call, (or something similar), java takes care of finding the appropriate memory automatically. All you have to do is initialize the components of the object.

All constructors are public and must be named the same thing as the class. A constructor in the Time class has the signature:

public Time(int h, int m);

One important thing to keep straight in a constructor is the order of the assignment statements. In particular, the instance variables need to be assigned, so these need to be on the left-hand side and the formal parameters need to be on the right.

Constructors are often overloaded, meaning that there are multiple ones defined with different parameter lists. The one instantiated depends on the number and types of the actual parameters. A default constructor is one that takes in no parameters.

Inheriting Methods

All classes in java are part of an inheritance structure.

In particular, all classes inherit from the class Object. From there, we can have a longer “chain” of inheritance. 

In any inheritance relationship, the class from which another class inherits is known as the parent class. The class that does the inheriting is known as the child class. The child class retains all characteristics of the parent class, plus can have some unique characteristics of its own.

Thus, the Time class, which we defined in class, automatically inherits all of the characteristics of the Object class. For example, the Object class has a toString method. If there is no toString method declared in the Time class, then anytime the toString method is called on a Time object, it will actually run the toString method defined in the Object class. In essence, the Time class has inherited the toString method in this example.

The other option would be to write a toString method in the Time class. Once we do this, if we call the toString method on a Time object, it will call the one defined in the Time class, overriding the toString method in the Object class. (The rule is that the method in the “nearest” class overrides all similar methods in previous parent classes.)

It would be a good idea to take some of the examples shown in class and test out what occurs when a method is overridden and when it is not.

toString
The following method is defined in the Object class:

public String toString();

It is frequently overridden in user-defined classes. The reason for this is as follows:

Anytime someone tries to print out an Object, what java automatically does is call toString() on that Object and just prints out what that method returns. Thus, if t is a time object and you run

System.out.println(t); //You are implicitly running 

System.out.println(t.toString());
compareTo
This method is necessary to implement the Comparable interface. We will talk about interfaces later, but the basic idea is that to implement an interface, you must write certain methods in your class. To implement Comparable, you must write a method with the following signature:

public int compareTo(Object o);

Furthermore, the method should work as follows:

It should return a negative integer if the current object comes before o. It should return 0 if the two objects are equal and it should return a positive integer if the current object comes after o.

Notice that the method takes in an Object. Thus, you must cast o to the appropriate type in order to access any components of the actual object that gets passed into the method.

static vs. instance
static means, “belongs to the class.”

instance means, “belongs to the object.”

An instance method MUST BE called on an object of that class.

A static method is always called CLASSNAME.method(<parameter list>); because it just belongs to the class and does NOT operate on any object inherently.

An instance variable belongs to the object, whereas only one copy of a static variable ever exists, regardless of how many objects of a class are instantiated.

Visibility modifiers
For right now, we are only using two of them:

Private: Accessible only inside of the class.

Public: Accessible anywhere.

Usually, instance variables are private while most instance methods are public. The goal here is to hide the representation of the data from the user. The public methods are the only means by which the user can manipulate objects they create. We can restrict the types of operations the user can perform by restricting the public methods we give them access to.

Arrays

We looked at one dimensional and two dimensional arrays in Java. Arrays in Java are always allocated dynamically:

int[] values = new int[10];
for example. The rules for accessing elements, etc. are the same as C. The same common errors that people commit in C occur in Java.

When we create an array of objects in Java, we must individually allocate space for the objects as well. When we do:

PhoneBookEntry[] names = new PhoneBookEntry[10];
We are only getting space for PhoneBookEntry references, and not the individual objects. We must later allocate this space. The following allocates one such slot, assuming a default constructor:

names[0] = new PhoneBookEntry();

Basics of Inheritance

An inherited class is defined as follows, using the key word extends:

public class ThreeDimensionalPoint extends




  Point {

…

}

In the example above, Point is known as the superclass, and ThreeDimensionalPoint is Point's subclass. (Alternatively, Point is known as the base class from which ThreeDimensionalPoint inherits. Also, there is an IS-A relationship here – a ThreeDimensionalPoint object IS A Point object as well.)

A subclass inherits all the characteristics of the superclass. Thus, all public methods in the superclass are valid to be run on objects of the subclass.

In the typical case, the subclass adds at least one instance variable, separate from those it inherited from the superclass.

In the example in the text, ThreeDimensionalPoint has its own instance variable z, and inherits x and y from Point.

In the typical case, a subclass just uses some of the methods in its superclass, but overrides other methods. To override a method, you must define a method with the same signature as one in the superclass in the subclass. The purpose of this is so that if you have a ThreeDimensionalPoint object, you end up running a different method on it than if you just had a Point object.

The method call super()

When overriding a method in the superclass, you have the option of calling the corresponding method from the superclass. To do this, instead of using "this" just use the name "super". For all methods except for constructor, you would call, super.methodname(). Pass the parameters you need/want to pass to the corresponding method in the superclass.

Constructors

All constructors in the subclass will automatically call the default constructor in the base class if there is NO EXPLICIT call to the base class constructor. 

The other option is to make an explicit call to the superclass constructor using "super". In this case, you control which of the constructors in the superclass gets called. (Here, the method call is just super, not super.methodname())

The rationale behind this is that you MUST build the base object first before building any of the rest of it to create the subclass specialization.

Reasons to use Inheritance, instead of just adding to one class

Putting all the functionality into one class may make it difficult to understand, or more difficult to use for simple things. (For example, sometimes you want to use points in 2 dimensions, sometimes in three. By incorporating inheritance, you make the use of both seamless. If you didn't, when wanting a 2-D point, you'd have to always just set z=0 and deal with that extra component.)
Polymorphism

Definition: A code expression can invoke different methods depending on the type of objects using the code.
Thus, polymorphism allows the same exact method call to invoke different methods. Here's the key:

In the code, we always use references.

But, those references can refer to any object of the class of the reference, OR any SUBCLASS (direct or indirect) of the class of the reference.

So, for example, we have a ColoredPoint class that inherits from Point, and a ThreeDColoredPoint class that inherits from ColoredPoint, a Point reference could refer to a Point object, a ColoredPoint object, or a ThreeDColoredPoint object.

Java dynamically determines the actual exact class of the object and uses that information when deciding what method to invoke, when there are options from multiple classes.

Rule 1: First look for the appropriate method IN the actual exact class of the object. If it's not there, then look in the direct superclass. If it's not there, continue up the inheritance structure.

Rule 2: For a match to occur, the name, number of parameters, and types of corresponding parameters must match. 

Remember, the type match is NOT polymorphic. Thus, if a parameter is a reference from a base class, but that reference is referring to an object of the subclass, and that subclass is the parameter type, then this will NOT be considered a match.

Visibility Modifier Rules

	Member

Restriction
	this
	Subclass
	Package
	General

	public
	X
	X
	X
	x

	protected
	X
	X
	X
	

	default
	X
	
	x
	

	private
	X
	
	
	


instanceof operator

The instanceof operator is used in Boolean expressions as follows:

reference instanceof Class

This expression is true if the reference to the left of the operator is referring to an object that belongs in the class designated to the right of the operator. It doesn't have to be the exact class. Thus, if the variable pt is a Point reference, and it was referring to a ThreeDColoredPoint object, then the expressions

pt instance of Point

pt instance of ColoredPoint

pt instance of ThreeDColoredPoint

would all evaluate to true.

But if pt referred to a ColoredPoint object, then the first two would be true and the last one would be false.

Late Binding
I don't think this is any different than the regular idea of polymorphism, but it's possible for two different references to be used to call the same method initially, but have that SAME method call work differently.

Imagine that a class M inherits from L. A method f is declared only in L. A method g is declared in both L and M. The method f makes a call to the method g.

Let l and m be references to objects from classes L and M, respectively. The method call l.f(), will eventually invoke the method g written in the class L. BUT, the method call m.f() which calls the same method f as the previous call, will invoke the method g written in the class M, since Java realizes that the original object that the method f was called upon was of class M.

Final class

You can not inherit from a final class.

Interfaces

Not a real class. You can only specify constants and method signatures. A real class can be created that "implements" an interface. You can do this as follows:

public class X implements Comparable { …

}

(Note: Any interface can take the place of Comparable.)

Abstract Base Classes

These are also not real classes, but in addition to what an interface can have, they can also have instance variables and actual methods with code. Instead of implementing an abstract base class, you inherit from it, using the key word extends.

The reason you would use an abstract base class is if there is some common functionality you want to encapsulate, but there's no single object that just has this functionality. The Bookstore example with both the Book class and CD class shows where an abstract base class may be useful. There is common functionality between the two, but they are different and neither could really inherit from the other. But, you can't actually have a generic MediaItem object.

For both interfaces and abstract base classes, you can declare references of that class, but those references can NOT reference actual objects of those classes, since those can't exist.

Exceptions

If there is a statement or group of statements that could throw an exception (which would normally crash your program), you can try to catch the exception and exit your program gracefully:

try {

…

}

catch (Exception e) {

…

}

If anything in the try block throws an exception, then we try to see if that specific exception matches any of the catch blocks. Find the first one that matches, and execute the code in that catch block.

If there is a finally block, that code always gets executed, regardless of whether there was an exception or not. (The exception if is an return statement is hit before it.)

Finally, you can create your own exceptions that inherit from Exception. Then you would have to throw these exceptions and try to catch them elsewhere.
Enums
These should be used when you are storing some discrete information that isn't necessarily numerical, for example the suits in a deck of cards or the set of months. In essence, you could think of each of these as a type without associated methods. Thus, Suit is a type which can have four values: CLUBS, DIAMONDS, HEARTS and CLUBS. In this case, we can define this "type" as an enum as follows:

public enum Suit { CLUBS, DIAMONDS, HEARTS, CLUBS }

Now, if you want to declare a variable of this enum, you do as follows:

suit mycardsuit;

We can set this to a value as follows:

mycardsuit = Suit.CLUBS;

These are preferable to using integer constants because integer constants can be meaningless (Why is CLUBS equal to 0?) in some contexts and if an "invalid" integer is used to represent an enum, the compiler will not catch it and a run-time error or logical error could occur. (For example, if we passed in 5 into a method that expected a suit, but only 0, 1, 2 and 3 were well-defined suits, then the behavior of that method is not guaranteed.) 

UML Class Diagrams

These outline the design of a class as well as the relationship between classes in an application.

Codes for visibility: -(private), +(public), # (protected)

Syntax: types are listed in a different place in an UML diagram than in regular Java syntax

Inheritance relationship: denoted by a line and arrow with the arrow(triangle) pointing to the superclass. Implementation is a broken line.

HAS-A relationship: denoted by a line and a diamond pointing to the more complex of the two classes.
My Own Class Analysis
1) Although better than last time, I didn't have notes ready before class several times.
2) The beginning of the class moved fairly slowly - some of the lecture material was redundant. At the same time, many were lost so this seemed to be necessary. The drawback is that I never got to cover GUIs in more detail, I never got to spend more time with program design and UML, and I didn't get to do the class exercises I had previously planned.
3) I hope that I gave you a solid background on: the basics of Java, how to use arrays, the use/creation of a basic class and the difference between instance and static variables and methods, the motivation behind inheritance and the basics behind how inheritance allows large projects to be coded more efficiently and so that they are extendible, why catching exceptions can be beneficial, and the importance of designing programs before coding them up.
I apologize for 1, and 2, they are really my fault for not spending enough time preparing for the course.
