Software Development Models

1. Software Life Cycle

Three main stages of a computer program:

1) Development

2) Use
3) Maintainance
As the names indicate, the development phase includes all the planning, writing, testing, and debugging of a computer program. When you are fairly certain that a program is usable, then you release it for use.

Any time a program is being used, it is quite probable that the users will find problems with the original release of a program. Even if they do not find major problems, they will almost certainly be able to suggest improvements. These reports are then used to improve the quality of the original program. These improvements are the maintenance of the original software.

Finally, most programs become too cumbersome to maintain at some point. It would be more beneficial for a company to start from scratch and write a new program for a task than to continue maintaining the old program. At this point, the program becomes retired. (Of course, if it really is good, like Michael Jordan, then it'll continue to come back several times from retirement.)

The duration of this life cycle is dependant on a number of things: purpose of the program, the extensibility of the original design, and the changes in the demands of the user.

One key note: many beginning programmers don't realize just how costly (time wise) maintenance can be. In fact, nearly three times as much time is used to maintain a program than is used to originally develop it.

Why should we think about this now???

Because how well we initially design and develop our programs could potentially drastically reduce the maintenance time of those programs.

If we have the foresight to identify future uses or changes that a customer may need and create our design to make those changes easier to implement, then we will save maintenance time. Hopefully we will save more time than the extra planning time that is needed.

The goal of software development is NOT to minimize the development time, but to minimize the overall effort necessary to develop, use and maintain a program over a period of time.

A couple analogies:

1) Need to plan to build a house

2) Brush your teeth! (Yes, I have taken bribes from local dentists!!!)

2. Development Process Model

Build-and-Fix Model:

1) Write your program

2) Run it until you find a problem, if you don't for a while,

 you are done, release your program.

3) Fix that problem

4) Go to 2

The problem here is that the testing of the program is not planned and not systematic. Maybe the user will catch some errors, but it's far more likely that some will fall through the cracks, without more careful testing.

In the 70s, some proposed the Waterfall Model:

1) Establish Requirements

2) Create Design

3) Implement Code

4) Test system

Once again, even if we plan how to test our program beforehand, this system does not allow us to go back to a previous step. Even with a great design, it's possible that we can't predict issues that will only present themselves during steps 3 or 4. It these cases it would be nice to go back to steps 1 and 2.

Using these two models, we can create the Iterative Process of program development.

3. Iterative Process

The same steps are used from the Waterfall Model:

1) Establish Requirements

2) Create Design

3) Implement Code

4) Test system

But, instead of going through these steps in a linear fashion, you are allowed to go back and forth between each step at any time.

The danger of being able to backtrack is that the developer may rely on it too much. Just because you can go back and forth between these steps doesn't mean you shouldn't do a good job with steps 1 and 2 before starting to code.

Using Prototypes in Testing
NOTE: I often use the term prototype to mean the first line of a function that completely specifies the syntax for calling that function. Here, I meant as a "quick&dirty" method to test portions of your program.

What that means is that anytime you are not sure about a portion of your program design, you try out an incomplete version of your program, isolating the aspect you are unsure of and test that out thoroughly. This testing should reveal whether or not your idea for a particular portion of your program is feasible.

Here are some examples:
1) If you've never used a class library before, write a main, practicing function calls to the library to see if they will do what you want. At the end, you create no product, but have a better understanding of the capabilities of the library and how to use those.

2) One portion of your program may have to print reports. You want to see if the program can do so quickly. Write a skeleton of code that allows you to test this one function and find out whether the reports get printed out quickly enough.

A "Throw-away Prototypes" is one that doesn't get used in the final product. This might seem like a waste of time, but keep in mind that after testing a prototype, you either verify that an idea is viable and get a better understanding of how you would use it, or you learn that it isn't viable.

Testing

Walkthroughs

Several different people sit down and analyze code/design documents looking for weaknesses. The goal here is not to solve problems, but merely to detect them.

Also, a design walkthrough should look at all requirements of the system, and determine how to decompose the code into separate classes. Perhaps even identifying some of the methods in each class.

Defect Testing

The goal of most testing is to find errors, which is also known as defect testing. Therefore, good test cases are ones that uncover problems. Since it is extremely difficult to PROVE that a large program is correct, we must rely on careful and planned testing. Test cases are simply specific instances of the program running. Each test case should be documented just in case a test run needs to be replicated. A test suite is a set of test cases that covers all aspects of the system to be testsed.

Since there are too many possibilities of input to test, a test suite has to be picked "intelligently."

There are two methods of testing:

1) Black-box
2) White-box
I guess they haven't heard of color TV :)

Black Box Testing

In making up test cases, you ignore the internal workings of what you are testing. Thus, this means you do NOT look at your code when picking test cases, but only the specifications that the code must adhere to.

Under these specifications, you must attempt to distinguish "equivalence categories." These are categories of inputs, where each input in the same category is likely to produce similar output results.

For example, imagine that you are testing a program that calculates the average of values in a file. You should test to see if the program works on an empty file, on a file of size 1, and then a file with several values in it. In essence, boundary cases should always be tested.

White Box Testing

This is where you DO look at the code to test it. In particular you create test cases that make sure every line of code gets run. (This is called statement coverage.) Consider the following C function:

int max(int a, int b) {

 if (a > b)

 return a;

 else

 return b;

}

You must try two test cases so that both portions of the if get executed. (1,2) and (2,1) would suffice.

Two ideas to help you test your programs:

Driver: A main written with the sole purpose to test a specific function.

Stub: An incomplete function is written so that one can test the overall flow of a program w/o finishing writing it.

These two go hand in hand and allow you to test before a program is finished. As mentioned in the last class, it is much easier to test bits and pieces of your program, ensuring their correctness as you go along than trying to do so with one huge chunk of code.

Inspections

These have five steps:

1) Planning

2) Overview

3) Preparation

4) Inspection Meeting

5) Inspection Report

Planning – inspectors are given different portions of the code to test, OR given different perspectives from which to test the same code. Each inspector creates specific checklists.

Overview – The author of the code informs the inspectors of any aspects of the project that may have affected the current product.

Preparation – Inspectors independently test their portion of the code, making notes of issues that arise to be mentioned in the meeting.

Inspection Meeting – Here each inspector goes through the code, line by line and mentions problems that have occurred. In particular, solutions to these problems should not be discussed; rather, the problems should be recorded only.

Inspection Report – The moderator of the meeting draws up a report that details the work that needs to be done and who needs to do it.

Debugging Tips and Techniques

1. Simplify the problem – try to isolate the smallest amount of code that reproduces the error, and just deal with that segment of code. While doing this, make sure NOT to lose the original state of the code.
2. Stabilize the error – If a bug does not occur consistently, try to make the bug appear more reliably. The goal is to determine the exact set of specific circumstances that create the bug. This will help you track down what is causing the bug.

3. Locate the error – Try to narrow down, as specifically as possible, where in your code the error actually is.

4. Explain the bug to someone else – Their fresh perspective may help out; alternatively, in explaining the bug, you might just figure out the problem yourself!

5. Understand common errors – array out of bounds, null pointer errors

6. Recompile everything – Some times modern compilers accidentally don't recompile all the code that needs to be recompiled. Do this to make sure your run accurately reflects all the changes you've made.

Gather more information – Try out more test cases until you can better sense a pattern of the type of error occurring.

Fix bugs as you find them – As you are hunting for one bug, you might find another. When you do, FIX IT!!! Whenever you find a bug, you should immediately work on fixing it!

Take a break – Sometimes, if you stare at the same problem too long, you can't help but look at it in a particular manner. By taking a break, it's possible you might be able to look at the code differently if you've taken some time away from it. This is also a common tip given for proofreading papers.
