Polymorphism
The basic idea behind polymorphism is that the decision of which method is called can sometimes be delayed till run-time.

To make a real-life analogy, consider the following:

Imagine that you invited a guest speaker from NASA. Imagine that everyone who works at NASA is of type NASAEmployee. In code, imagine that you instantiated a variable of type NASAEmployee named UnknownSpeaker. Then, you would have her speak:

UnknownSpeaker.speak();

Now, you could relay this command before knowing WHO was speaking. But, at run-time, depending on who the speaker is, they may talk about different things. If you get an astronaut like Sally Ride, she might talk about what it's like to experience zero gravity for several days straight. If on the other hand you got a project manager, she might talk about how to create a time line.

Since you don't know beforehand that you are going to get a speaker, it would be illegal to do the following:

UnknownSpeaker.zerogravitydemo();

since only an Astronaut can do the zero gravity demo and when you make the initial invitation, you DON'T know that you're going to get an Astronaut.

But since all NASA Employees can speak, it's perfectly valid when you extend the invitation to ask them to do so and then when the actual speech happens, it is tailored by the specific NASA Employee that comes to speak.
Motivation behind polymorphism

An example of a situation where polymorphism would be desirable is processing payroll. Each employee must get paid, but different employees get paid differently. An inheritance structure more easily encapsulates the differences between how everyone gets paid in a seamless manner than other systems.

For example, you could take care of paying everyone as follows:

Employee[] workers = new Employee[100];

// Stuff happens here…

//Here we pay everyone:

for (Employee worker: workers)

 worker.pay();

The neat thing here is that even though each array element is a reference to an Employee, the actual object to which is being referred could easily be a specialized Employee, such as a SalariedEmployee. Even though we might not know that workers[3] is a SalariedEmployee before run-time, when the program runs, it can pay the SalariedEmployee in the appropriate manner because the pay() would be overridden in the SalariedEmployee class.

In general, it allows you to have a collection of general Objects and perform some action on all of them, but that action can be modified if some of the general Objects are of a more specific type.

Example: Coordinate & ColorCoordinate – toString()
The Coordinate class manages an ordered pair of an integer and a character. For simplicity's sake (and to focus on polymorphism), the class only has constructors, accessors, a toString() method and a couple equals() methods.

We will examine to possible scenarios for the toString() method:

(1) It is ONLY defined in Coordinate.

(2) It is defined in both Coordinate and ColorCoordinate.

In the former situation, no matter whether the reference is a Coordinate reference or a ColorCoordinate reference, the toString() in Coordinate will be called. This situation is generally straight-forward. There isn't a choice between multiple toString() implementations to really consider. (It's clear that the toString() in Object won't get called.)
In the latter situation, the type of the actual Object matters. If a Coordinate reference c is referring to a ColorCoordinate object, then c.toString() will invoke the toString() method in the ColorCoordinate class.
In general, the rule is that syntactically, the method call must be valid within the class of the REFERENCE. So, since c is a Coordinate reference, we MUST have a toString() method defined for a Coordinateobject. But, once this is satisfied, then we find that at run-time, if we notice that c is referring to an Object of the inherited(subclass) class, and that inherited(subclass) class overrides that particular method, then that is the one that gets called at run time.
Example: Coordinate & ColorCoordinate – equals
We could potentially define four separate equals methods total

(1) public boolean equals(Coordinate c); // in Coordinate

(2) public boolean equals(ColorCoodinate c); // in Coordinate

(3) public boolean equals(Coordinate c); // in ColorCoordinate

(4) public boolean equals(ColorCoodinate c); // in ColorCoor.

In the chart below, each column refers to one of the four methods above and each row represents a possible scenario of which methods are define. Here are some of the situations we'll consider:

	Situation
	Method #1
	Method #2
	Method #3
	Method #4

	1
	Yes
	No
	No
	No

	2
	Yes
	Yes
	No
	No

	3
	Yes
	No
	Yes
	No

	4
	Yes
	No
	No
	Yes

	5
	Yes
	Yes
	Yes
	No

	6
	Yes
	Yes
	Yes
	Yes

One key idea to remember is the following: type matching (to determine which method gets called) for PARAMETERS is NOT dynamic. The compiler identifies the type of the parameter and that is what is used to determine what method gets called.
In our situations above, it's clear what happens in situation #1.

But after that it gets a bit more confusing, so let's try to lay down some rules to help use deal with the cases above, without having to remember 6 separate sets of rules.

General Rules for Polymorphism

To help explain the rules below, examples will be given. In each of the examples, assume that A inherits from Object, B inherits from A, C inherits from B, and D from C.
1) First, you must find a method that matches the signature of the method called in the class of the reference of the object upon which the method was called.

This, if the call to a method is of the form

o.methodcall(parameters here)

then there must be a method call in the class of the reference o OR a class that the class of the reference from o inherits from that fits the method signature. If there is not, then the code should produce a syntax error.

Note: In finding a method call that matches, remember that the types of the actual parameters are based on the types of the references, and not based on the types of the objects they are referring to.
So, for example, if the reference of o is of type B, and o is referencing an object of type C, then a method of the signature of the method call must be found in either the Object class, the class A or the class B. If it is ONLY in class C, then this would result in a syntax error.
2) Once we find a method call that matches in the class of the reference of o, then we check the type of object to which o is referring. To finalize the method actually called, we start in the class of the object, and work our way down the hierarchy until we find a method that matches the appropriate signature. Basically, once a method call is accepted as being syntactically valid, then we start over in determining which method call actually runs, at run-time.

So, for example, if the reference of o is of type B, and o is referencing an object of type D, then we would FIRST look in class D to see if there was a method matching the signature of the method call. (In checking for this match, we use the types of the references of the actual parameters.) If there is, that is the method that gets called. If not, we then look to class C. If there is a method in class C that matches, then that is the method that gets called. If not, then we are guaranteed a match for a method in class B, and this is the one that gets called.
Applying our Rules
Let's apply our rules to situation #6 for the equals method in the Coordinate and ColorCoordinate classes. Here are the four objects initially created:

Coordinate test = new ColorCoordinate(3,'a',"Green");

ColorCoordinate red = new ColorCoordinate(3,'a',"Red");

ColorCoordinate blue = new ColorCoordinate(3,'a',"Blue");

Coordinate nocolor = new Coordinate(3,'a');
Now, let's consider determining WHICH of the four methods gets called for each of the following calls:

nocolor.equals(red): red is a ColorCoordinate reference, and since nocolor is referring to a Coordinate, the method that gets called is Method #2.

red.equals(nocolor): nocolor is a Coordinate reference, and since red is referring to a ColorCoordinate, the method that gets called is Method #3.

red.equals(blue): Method #4 gets called since both references are of type ColorCoordinate.

test.equals(blue): blue is a ColorCoordinate reference, so initially, we match with Method #2, but using polymorphism, we see the test actually refers to a ColorCoordinate object, so Method #4 is executed.

blue.equals(test): Here, method #3 gets executed because test is a Coordinate reference, and this doesn't dynamically get binded. However, if a method is called upon test in equals, polymorphism could occur for THAT call.
A couple exercises
1) Imagine adding a ThreeDCC that extended ColorCoordinate, and adding two equals methods to it: one that takes in a Coordinate and another that takes in a ThreeDCC. (You can actually add this fairly easily.)

In this situation, identify the equals methods that get called in the following sequence of code:

Coordinate test = new ColorCoordinate(3,'a',"Green");

ColorCoordinate red = new ThreeDCC(3,'a',10,"Red");

ThreeDCC blue = new ThreeDCC(3,'a',79,"Blue");

Coordinate nocolor = new Coordinate(3,'a');
test.equals(red);

red.equals(test);

blue.equals(red);

red.equals(blue);

nocolor.equals(red);

nocolor.equals(test);

blue.equals(test);

2) Actually write a small ThreeDCC class and test out your answers. You don't need to write a meaningful equals method, just enough to test the method calls above.

