Vector Class
Java provides a few classes that allow us to manage collections of objects. Today, we'll discuss the Vector class, which stores a group of objects.

One of the "limitations" of an array in C is that it can only store one type of object. In Java, a Vector can store different types of objects. (Actually so can an array…) Secondly, arrays in C are of a fixed size. (Actually you can also declare dynamically allocated arrays in C.)

The Vector class in Java essentially handles both of these issues very well. A Vector object can arbitrarily grow and shrink as needed without the user worrying about any of the details. Furthermore, a Vector can store different types of objects.

Well, this is a bit of a stretch actually. The manner in which Java gets away with having Vectors that can store different types of objects is through its "tree" of inheritance. All non-primitives are objects, and some objects inherit from others. For example, if I wrote a Car class, I could write a SportsCar class that inherited all the methods and variables of the Car class, but then maybe had some extra variables and methods that were specific to the SportsCar. Furthermore, then I could maybe have a Corvette class that inherited from SportsCar. It would retain all the attributes of the SportsCar class, but then have some of its extra attributes. In this example, we have the following:

SportsCar inherits from Car, so a SportsCar object IS-A Car object.

Corvette inherits from SportsCar, so a Corvette object IS-A SportsCar object AND a Car object.

Java also provides a very basic class called Object. Every non-primitive class automatically inherits from Object. Thus, in a way, all non-primitives are valid "Object" objects. Thus, if we create an array of Object or a Vector of Object, then that collection can store ANY sort of non-primitive, ranging from a Time object, to a String object, to a Corvette object.

In the old version of Java, the way to create an empty Vector was as follows:

Vector v = new Vector();

This looks like a regular default constructor.

In the new version of Java, generics are used. This essentially means that some classes can be based upon a "generic" class, where you fill in the class you desire. For a Vector object, you are allowed to declare a Vector of any type of class. Here is how we can declare a Vector of class Object:

Vector<Object> v = new Vector<Object>();

Thus, added to the name of the class is <T>, where T is replaced with the type of object you want the vector to store.

If you wanted to create a Vector of String objects, you'd do the following:

Vector<String> v = new Vector<String>();

(Some) Methods in the Vector Class

// Appends this vector with a new element with value v.

void addElement(T v)

// Inserts value v into this Vector such that v has index i.

// Any preexisting elements with indices i or greater are shifted

// backwards by one position.

void insertElementAt(T v, int i)

// If i is a valid index in this Vector, then the ith element is set

// to v. Otherwise, an ArrayIndexOutOfBoundsException

// is thrown.

void setElementAt(T v, int i)

// Returns the number of elements in this Vector.

int size();

// If i is a valid index in this Vector, it returns the ith element;

// otherwise an ArrayIndexOutOfBoundsException is thrown.

T elementAt(int i)

// Returns whether this Vector has an element with value v.

boolean contains(Object v)

In essence, a Vector is similar to an array, except that there is an extra level of data abstraction going on. Rather than directly accessing the array, the user indirectly interacts with the array through the public methods provided in the Vector class.

Some Details about Using a Vector

Most of the methods are quite self-explanatory, but a couple things need to be mentioned:

1) When values are extracted from a Vector of Object(s), how can we make them the correct type?

2) Can we insert elements in arbitrary indices, or do the elements always have to occupy the first set of indices, starting at 0?

In order to properly use an Object extracted from a Vector, you must cast it to the appropriate class. Consider the following:
String middle = (String)v.elementAt(1);

In this example, the extracted item is an Object, but is also known to be a String. Casting it to a string allows us to have a String reference, middle, reference it.

Note that the cast is NOT necessary when adding Strings into the Vector.

The answer to the second question is no. You are not allowed to insert an element into index 20, if indices 0 through 19 aren't already filled.
Use of the ArrayList class

The ArrayList class is very similar to the Vector class. It also manages a collection of objects, and as the name indicates, does so with an array implementation. This is also a template class, so you can declare an ArrayList of any sort of Object. Here is an example declaring an empty ArrayList of String:

ArrayList<String> stooges = new ArrayList<String>();

The same sort of issues (dealing with casting) occur when you try to retrieve an element from an ArrayList that is of a different type than the template. (For this example, if we stored an object from a class that inherited from String, we would have to cast an item retrieved from this ArrayList to the proper type.)

An iterator can be used with an ArrayList. Here's the example from the code shown in class:

for (String s: stooges)

 System.out.println(s);

Here stooges is the name of the ArrayList reference that we are iterating through.

An iterator can be used with a Vector and a regular array as well. The general syntax of an iterator is as follows:

For (Type variable: collection) {

 // Use variable in here.

}
An iterator allows you to do something for each element in a collection.
Here are a few of the methods from the ArrayList class:

// Appends the list with a new element with the value v and
// returns true.

public boolean add(T v);
// Insert value v intp the list such that v has index i. Any

// preexisting elements with indices I or greater are shifted

// backwards by one element position.
public void add(int I, T v);
// Removes all elements from the list.

public void clear();

// Returns whether the list has an element with value v.

public boolean contains(Object v);

// If i is a valid index, it returns the ith element; otherwise

// an exception is generated.

public T get(int i);
// If i is a valid index, it removes the ith element from the list by

// shifting forward elements i+1 and on. In addition, the

// removed element value is returned. Otherwise an exception is

// generated.

public T remove(int i);
Collections Algorithms

For the various collection classes, there exist some common methods that perform operations on those different types of collections. (Namely, these Collection methods are such that you can pass in different types of collections - either a Vector, ArrayList or one of Java's other predefined collections, and the method will perform the appropriate operation on that collection.)

It's important to note that these methods are static - thus, they do not operate on any specific type of object. Instead, they belong to the class Collections and can be called in the following fashion:

Collections.max(redteam);

In order for these methods to work, it's important that the Collection of Objects is actually a collection of a type that implements Comparable. Comparable is an abstract class that other classes can implement. In order to implement Comparable, a class must contain a compareTo method. Here's the signature necessary for a compareTo method:

public int compareTo(T v);

where T is the class in which the method resides. (Thus, this method is NOT a template method.)

Furthermore, the method much return a negative integer if the current object comes before v in order, a positive integer if the current object comes after v in order, and 0 if the two objects are equal.

Collections Method Signatures

// Returns the number of elements of collection c equal to the

// the object v.
public static int frequency(Collection<?> c, Object v);
// Returns the maximum element of collection c with respect to

// its natural ordering.

public static <T, Comparable<? Super T>> T max(Collection<? Extends T> c)

// Returns the minimum element of collection c with respect to

// its natural ordering.

public static <T, Comparable<? Super T>> T min(Collection<? Extends T> c)
// Reverses the order of the elements in list a.

public static void reverse(List<?> a);
// Pseudorandomly permutes list a.

public static void shuffle(List<?> a);
// Sorts list a into nondescending order using the natural

// ordering.
public static <T extends Comparable<? Super T>> void sort(List<T> a);

In order to call these methods, if we have a collection of Comparable objects, the work is fairly easy. Consider the example where redteam is an ArrayList<String> reference. They we can do the following:

Collections.sort(redteam);
