
An example to illustrate the difference between

actual and formal parameters

In this program, the user will enter four values. The program

will print out the sum of the pair of largest values.

A function that may help us in this program is one that

determines the maximum of three integers. Here is such a

function:

int Max3(int a, int b, int c) {

 if ((a > b) && (a > c))

 return a;

 else if (b > c)

 return b;

 else

 return c;

}

Now, we can use that function as follows in our program:

#include <stdio.h>

int Max3(int a, int b, int c);

int main() {

 int a, b, c, d;

 int max1, max2;

 printf("Enter the four values.\n");

 scanf("%d%d%d%d", &a, &b, &c, &d); // Read input.

 max1 = Max3(a+b, a+c, a+d); // Compute max of three pairs

 max2 = Max3(b+c, b+d, c+d); // Compute the max of the

 // other three pairs.

 if (max1 > max 2)

 printf("The sum of the two largest values is %d\n", max1);

 else

 printf("The sum of the two largest values is %d\n", max2);

 return 0;

}

// Pre-condition: All parameters are integers.

// Post-condition: The largest value of the three is returned.

int Max3(int a, int b, int c) {

 if ((a > b) && (a > c))

 return a;

 else if (b > c)

 return b;

 else

 return c;

}

In this previous example, in the function definition, there were

three variables, a, b, and c. These are the formal parameters

for the function. In main, we called the Max3 function twice.

On the first call, we passed the following actual parameter:

a+b, a+c, and a+d. Note that the a, b, and c represented here

are DIFFERENT than the a, b, and c that are formal

parameters in the Max3 function.

In general, each function gets to have its own variables. But

within a function you can NOT have two variables with the

same name. BUT, you CAN have two variables with the same

name in two different functions. Thus, when you trace through

code, it makes sense to refer to variables with subscripts, like

so: amain or aMax3.

Furthermore, it's also important to realize that the Max3

function can be called multiple times, so that for EACH

separate function call, the Max3 function has a copy of each of

its own variables. (There are two types of variables a function

can have: its formal parameters AND its locally defined

variables.) If/When you see recursion in COP 3502, this

understanding will be very important.

In the second call to Max3, the formal parameters are b+c,

b+d, and c+d. Remember that each time a function call is

made, the FIRST thing that occurs is that the VALUES of the

ACTUAL parameters get COPIED into the corresponding

FORMAL parameter. Then, the function is run. While this is

occurring, the ONLY valid variables are formal parameters of

the function and other local variables of the function. When

the function completes, it returns to the function that called it,

and that function resumes exactly from the point it left off.

Another Example

#include <stdio.h>

#define CUR_YEAR 2005

#define CUR_MONTH 9

#define CUR_DAY 29

int main() {

 char oldname[20], name[20];

 int oldage, age, mon, theday, yr;

 char ans, dummy;

 // Calculate first person’s age.

 printf(“Enter the first persons name.\n”);

 scanf("%s", oldname);

 printf(“Enter the first persons birthdate, mon, day and yr\n.”)

 scanf("%d%d%d", &mon, &theday, &yr);

 oldage = Find_Age(mon, theday, yr);

 printf(“Are there more people in your group?\n”);

 scanf("%c%c", &ans, &dummy);

 while (ans == 'y') {

 // Look at next person’s age.

 printf(“Enter the next persons name.\”);

 scanf("%s", name);

 printf(“Enter his/her birthdate; month, day and year.\n”);

 scanf("%d%d%d", &mon, &theday, &yr);

 age = Find_Age(mon, theday, yr);

 //Adjust oldest person and age, if necessary.

 if (age > oldage) {

 oldage = age;

 strcpy(oldname, name);

 }

 printf(“Are there more people in your group?\n”);

 scanf("%c%c", &ans, &dummy);

 }

 printf("%s is the oldest person at %d years old.\n", oldname,

 oldage);

 return 0;

}

// Precondition: Each parameter is a positive integer

// representing the month, day and year of the

// user’s birth.

// Postcondition: The person’s age will be returned.

int Find_Age(int month, int day, int year)

 int age;

 age = CUR_YEAR – year;

 // Adjust age based on time of year of the user’s birthday.

 if (month > CUR_MONTH)

 age--;

 else if ((month == CUR_MONTH) && (day > CUR_DAY))

 age--;

 return age;

}

Technically speaking, there's a tiny case where this program

may output the wrong person. What is that case? How could

we redesign this program to deal with that case?

Void functions

Most of the mechanics of void functions are similar to

functions that return values. However, there is one KEY

difference: a void function does NOT return a value to the

calling function. It is quite possible that no value needs to be

returned, thus there is no need to do so. However, we CAN still

use the return statement in a void function. Here is the syntax:

return;

If encountered in the middle of a function, this statement ends

the function and returns control to where the function was

called from.

Since a void function does not return a value, it does not make

sense to call it as part of an expression that is being evaluated.

Rather, a void function should almost always be called on a

line by instead.

An example of a void function you have seen is srand. It takes

care of a task and then finishes. Thus, you simply call this

function on its own line.

Another simple example of a void function is one that prints

out a menu:

void menu() {

 printf("Please choose one of the following.\n");

 //....

}

You can call this function as follows: menu();

Another situation where void functions might be useful is in a

menu driven program where the menu choices are completely

unrelated. Here is a skeleton of the main program of such a

function:

int main() {

 int choice;

 menu();

 scanf("%d", &choice);

 while (choice != 4) {

 if (choice == 1)

 function1();

 else if (choice == 2)

 function2();

 else if (choice == 3)

 function3();

 else if (choice != 4)

 printf("Sorry, please enter your choice again.\n");

 menu();

 scanf("%d", &choice);

 }

}

Each of the functions listed would independently perform their

own task. They act as mini-mains in some sense. Really, they

are just functions that execute, once they are done, there is no

need to save any of the local variables that were created while

they were run, nor is there any need to communicate any

information back to main.

Example using void functions

Printing out patterns with stars was an example we looked at

previously. A natural question to ask is if functions could help

us out somehow in these programs.

If we take a look at the types of patterns that could be printed

out, we see that one type of function that could be useful is a

function that prints out a designated character a certain

number of times.

In specifying this task, we have two unknowns: The character

to be printed, and how many times it will be printed.

Thus, it makes sense for our function to take in two

parameters. Furthermore, one parameter should be a

character, the character to be printed, and the second an

integer specifying the number of times to print the character.

Using this information, we can come up with a function

prototype:

// Precondition: ch is a printable character and numtimes is

// a nonnegative integer.

// Postcondition: ch will be printed numtimes times in a row.

// no newline character will be printed after

// this.

void printChars(char ch, int numtimes);

Now, let's take a look at how we can accomplish this task:

void printChars(char ch, int numtimes) {

 int index;

 for (index=0; index<numtimes; index++)

 printf("%c",ch);

}

Now, consider using this function to print a triangle of the

following shape (in this example n=4):

 **

 *

int main(void) {

 int index, n;

 int numspaces, numstars;

 printf("Enter the size of your triangle.\n");

 scanf("%d", &n);

 for (index=0; index<n; index++) {

 // Determine the number of spaces and stars.

 numspaces = index;

 numstars = n - index;

 // Print spaces first, then stars.

 printChars(' ', numspaces);

 printChars('*', numstars);

 printf("\n");

 }

 return 0;

}

This question tests whether or not you understand the

mechanics of functions. Determine the output of the following

program:

#include <stdio.h>

int f(int a, int b, int c);

int main() {

 int a = 2, b = 3, c = 1;

 c = f(a+b, a+c, b+c);

 printf("a=%d b=%d c=%d\n", a, b, c);

 b = f(a, b, c);

 printf("a=%d b=%d c=%d\n", a, b, c);

 a = f(a, b, f(c, b, a));

 printf("a=%d b=%d c=%d\n", a, b, c);

 system("PAUSE");

 return 0;

}

int f(int a, int b, int c) {

 int sum;

 sum = a + b + c;

 if (sum < a*b)

 return a + b;

 if (sum <= 2*a*b)

 return b + c;

 return a + c;

}

