
Crude Video Game Simulator Algorithm

The following program will simulate free games at an arcade.

The player will enter his/her score for 5 levels of play. The sum

of these is their game score. If this exceeds 100,000, then the

player gets a free game. The player continues to get free games

if they exceed 100,000, and their total score is the sum of all of

their game scores. This algorithm simulates this process and

prints out the player’s total score at the end of the game.

#include <stdio.h>

int main() {

 int temp_score, game_score, total_score;

 int level, done = 0;

 total_score = 0; //Initialize player’s total score.

 //Continue playing games until user fails to earn a free game

 while (done == 0) {

 // Initialize player’s game score and level.

 game_score = 0;

 // Tabulate game score for all 5 levels

 for (level=1; level<=5; level++) {

 printf(“What was your score on level %d?\n",level);

 scanf("%d", &temp_score);

 game_score = game_score + temp_score;

 }

 // Compute new total score and stop if player has failed

 // to earn a free game.

 total_score = total_score + game_score;

 if (game_score < 100000)

 done = 1;

 else

 printf(“Congratulations, you have won a free game!\n”);

 }

 printf(“Game Over! Your total score is %d\n", total_score);

 return 0;

}

The Comma Operator

The comma operator allows multiple statements to execute on

a single line. To do this, simply separate the two statements

with a comma:

stmt1, stmt2;

An example of this would be:

i = 0, j = 0;

All this does is execute the leftmost statement first, followed by

the rightmost statement. In most situations, you can just as

easily write out two separate statements:

i = 0;

j = 0;

The only situation where using the comma operator may be

desirable is in a for loop. If you want to initialize two variables

or increment two variables, you could do something like:

for (i=0, j=0; i+j<20; i+=2, j--) {

 ...

}

My advice would be that unless you find a compelling reason to

use the comma operator, don't use it. The example of page 98

of the text shows a potential problem of doing so.

Do-While Loop

This is the third and last loop you will see. Here is the general

syntax:

do

 stmt;

while (<bool exp>);

Typically, the statement will be a block, so usually, we have:

do {

 stmt1;

 stmt2;

 ...

 stmtn;

} while (<bool exp>);

stmtA;

Here is how this construct is evaluated when run:

1) Execute statements 1 through n.

2) Check the boolean expression.

3) If it is true, go back to step 1, otherwise continue execution

with statement A.

The key difference between this construct and the while

construct is that the body of the loop must be executed at least

once here. If you have this type of situation and it is easier for

you to check the boolean condition AFTER you have executed

a block of statements than before, then this loop may be a

suitable choice.

Our favorite sum program...using a do-while

/* Arup Guha 9/17/03

 This program sums up the odd numbers

 in between 1 and 100, inclusive and

 prints this sum to the screen. */

#include <stdio.h>

int main() {

 // Initialize variables.

 int val = 1;

 int sum = 0;

 // Add successive odd numbers.

 do {

 sum = sum + val;

 val = val + 2;

 } while (val < 100);

 // Print out the result.

 printf("1+3+5+...+99=%d\n",sum);

 return 0;

}

Guessing Game!

/* Arup Guha 9/17/03

 This program allows the user to guess a

 secret number from 1 to 100. The user is

 told if their guess is too low or high

 and is allowed to guess again. */

#include <stdio.h>

int main() {

 int secret_number;

 int guess;

 // Create secret number randomly.

 secret_number = 1+rand()%100;

 // Prompt user for a guess.

 printf("Guess a number(1-100)\n");

 do {

 // Read in guess and print out

 // appropriate response.

 scanf("%d", &guess)

 if (guess < secret_number)

 printf("Your guess is too low!\n");

 else if (guess > secret_number)

 printf("Your guess is too high\n");

 } while (guess != secret_number);

 // Print out winning message.

 printf("You guessed correctly!\n");

 return 0;

}

The goto statement

As the book says, generally speaking, this statement should not

be used. There are a few instances where it makes code a bit

more efficient and reduces the number of nested structures,

but in my experience, when most introductory programmers

use gotos, they don't do so efficiently and their code generally

becomes confusing to them.

The break and continue statements

Both of these statements can be used to aid flow control in

loops. In particular, here is what they do:

break: Will break you out of the inner-most loop in which the

break statement resides.

continue: Will skip the following code within the inner-most

loop in which the continue statement resides, returning the

flow of control to the top of that loop.

Break Statement Example

In the following code segment we will attempt to pick 10

random numbers. Each of the number picked must be greater

than all the previous values picked. Each value will simply be

printed to the screen.

value = rand();

max = value;

printf("Number 1 = %d\n", value);

for (i=2; i<=10; i++) {

 while (1) {

 if (value > max) {

 max = value;

 break;

 }

 value = rand();

 }

 printf("Number %d = %d\n", i, value);

}

Switch Statement

This statement, just like the if statement, allows for conditional

execution. The general construct is as follows:

switch (<integer expression>) {

 case <value1>:

 <stmts1>

 break;

 case <value2>:

 <stmts2>

 break;

 ...

 default:

 <stmtsn>

}

stmtA

The manner in which this expression is evaluated is as follows:

1) The integer expression is evaluated.

2) If this expression is equal to value1, then <stmts1> are

executed and the break statement carries the execution to

stmtA.

3) Otherwise, each value is compared th the integer expression

value until one is found to match. At that point, the

corresponding set of statements is executed and then the break

carries execution to stmtA.

4) If no listed value is equal to the value of the expression, then

the default case is executed.

Couple notes: The lists of values may not include ranges of

values, but only single values. Also, the break statements are

not required, but without them, then several cases may get

executed.

This generally limits the use of case statements to situations

where you know an expression will equal one of a few integer

values and based on that want to execute a certain segment of

code. You can emulate a case statement with an appropriate if

statement.

Here is an example of a case statement:

switch (answer) {

 case 1:

 printf("You have selected #1.\n");

 break;

 case 2:

 printf("You have selected #2.\n");

 break;

 case 3:

 printf("You have selected #3.\n");

 break;

 default:

 printf("Invalid selection.\n");

}

Example using a continue statement

In this segment of code, we add up n values entered by the user

that are valid test scores in between 0 and 100, inclusive:

count = 0;

while (count < n) {

 scanf("%d", &score);

 if (score < 0 || score > 100)

 continue;

 count++;

 sum = sum + score;

}

The Conditional Operator

The general syntax of an expression using the conditional

operator is as follows:

<boolean expr1> ? <arith expr2> :

 <arith expr3>

This expression is evaluated as follows:

1) The boolean expression is evaluated.

2) If it is true, the entire expression evaluates to <arith expr2>

3) If it is false, the entire expression evaluates to <arith expr3>

Basically, this is a short-hand notation to calculate an

expression that could be calculated in an if statement. Here is

an example of a segment of code that assigns x to the minimum

of x and y, and y to the maximum of x and y. (Assume max and

min are declared variables also.)

max = (x < y) ? x : y;

min = (x > y) ? x : y;

Although this type of expression can shorten code, I believe it

makes code more difficult to read at the expense of saving a

couple lines of writing. Based on that observation, I do not

recommend its use. (Though, you should understand the

syntax of it in case you see it used in other peoples' code.)

Common Programming Errors w/loops

1) Creating infinite loops

2) putting a ; right at the end of a loop structure.

 (e.g. for (i=0;i<10;i++);)

3) Forgetting to put {} around the loop body.

4) Creating an incorrect boolean expression. (e.g. using an &&

instead of an ||, or using the boolean expression with an

opposite value of the one you should use.)

5) Off by one error - loop runs one too many or too few times.

6) Not using the loop index effectively inside of the body of the

loop.

7) Forgetting to print a menu in a loop, or some other task that

should be repeated each loop iteration.

