Inserting an Element into a Linked List In Order

Last time, we simply looked at how to place an element at the front of a linked list. However, we may want to maintain a linked list in order. In this case, we must insert a new element into its proper location instead of the front. Here are the cases we will consider:

1) Inserting into a NULL list.

2) Inserting an element into the front of the list.

3) Inserting an element later in the list.

You would naturally add, "inserting an element to the end of a list" as a choice, but it turns out that the code for this case and for case 3 are the same.

Before we move further, let's look at the prototype of our insert function. It will be the same as the insert function from last time:

struct ll* insert(struct ll *front, int num);

Notice that we must return a pointer to the front of the newly formed list, just in case it's different from the previous front pointer. Furthermore, we must also first create the node to insert given num, before we actually do the insertion.

Here is how we can create the node:

struct ll* temp =

 (struct ll*)malloc(sizeof(struct ll));

temp->data = num;

temp->next = NULL;

Insertion into the front of the list

If we find the list to insert into NULL, all we have to do is

return temp;

since this pointer points to the accurate list of size 1.

Otherwise, if we KNOW the node is supposed to be attached to the front of the given list, we can simply do the following:

temp->next = front;

return temp;

Let's look at a picture illustrating this case:

One other detail we must cover here is how to check to see IF the new value to insert should be at the front of the list. Compare as follows:

if (temp->data < front->data)

Why do we not have to worry about front being NULL, the way I have written the code?

Normal Insertion Case

When we do a normal insertion, which node must we "identify" in the list?

Here are two choices to pick from:

1) The node right before where the inserted node will be placed.

2) The node right after where the inserted node will be placed.

The answer is #1, but why?

What happens if we don't have a link to this previous value?

Let's look at this picture:

Now that we've determined that we want an extra pointer to the node before where the inserted node will go, let's see what we need to do from there, assuming we already have that pointer:

Iterating the "Extra" Node to the Correct Place

At first it may seem that the correct idea would be to loop as follows:

iter = front;

while (temp->data > iter->data)

 iter = iter->next;

Let's trace through this code segment on the following example:

What problem do we face here? How can we fix it?

The problem is that we end up at the node AFTER where we want to do our insertion, not before. In essence, we have an off by one error. Seems as if that is easy to fix in a for loop that is iterating through array elements, but how about a linked list?

Just compare with the next value after the one we were comparing temp->data with above. So we get:

iter = front;

while (temp->data > iter->next->data)

 iter = iter->next;

What is the problem here?

Catching the Possible NULL Pointer Error

As the title of the slide indicates, we could run into a NULL pointer problem. Consider running the code segment on the previous page on the following list:

iter = front;

while (temp->data > iter->next->data)

 iter = iter->next;

We can fix this by making sure we never try to access a component of a NULL struct, so to speak. We will utilize short-circuiting here:

iter = front;

while (iter->next != NULL &&

 temp->data > iter->next->data)

 iter = iter->next;

Thus, we ONLY check the node to insert against another value if that other value is in the list. If it isn't, we immediately pop out of the loop. It just so happens, this is exactly what we want to do at this point in time.

