
Some Computer Preliminaries

Before we get started, let's look at some basic components that

play a major role in a computer's ability to run programs:

1) Central Processing Unit: The "brains" of the computer that

actually execute all the instructions the computer runs.

2) Main Memory: All running programs and data they use

must be stored here. This is only active when the computer is

physically on.

3) External Memory: This is more permanent memory, such as

a hard-drive, floppy disk, CD, etc. In order for any programs

stored on these medium to run, they have to be transferred into

main memory.

4) Operating System: Provides an interface between the

machine and the user and allocates the computer's resources.

5) Compiler: A "translator" which converts a program written

in a high-level computer language into machine language, a set

of 0s and 1s understood by the computer.

6) Application Programs: Programs intended to be used by

end-users on a computer.

How everything fits together

When you boot up your computer, the first major thing that

occurs, is that the operating system gets loaded into main

memory.

This program (the operating system), is responsible for

providing the user with a nice interface, and responding to the

requests of the user.

For example, if the user double clicks on the Netscape icon, this

invokes the computer to find the Netscape program stored on

the hard drive and load it into main memory. Once the

program is loaded into main memory, if no other program

needs to be run, then it becomes the current program running.

Any data this program needs to execute must also be loaded

into main memory. All executable programs are stored in

machine language, which is understood by the machine.

In this class, our goal will be to learn how to write some simple

programs in a high-level language, C, that can be compiled

into executable programs.

The vast majority of the work you all will do for this class will

follow the cycle pictured on page 3 of the text. This process can

be listed as follows:

1) Edit your program

2) Compile your program

3) Execute your program

4) Go to step 1, if you are not satisfied with your results.

The key here is to note that changing your program doesn't

automatically change how it runs. Compilation is necessary.

Our first C Program

/* Arup Guha

 My First C Program

 8/26/04

 COP 3223 Rocks! */

#include <stdio.h>

int main(void) {

 printf("COP 3223 Rocks!\n");

 return 0;

}

Let's take this program apart line by line:

/* Arup Guha

 My First C Program

 8/26/04

 COP 3223 Rocks! */

This is a comment, which is ignored by the compiler. The

purpose of a comment is to help the reader identify key

information about the program. The first comment in a

program, the header comment, should identify the author of

the program, the date the program was written, as well as a

brief description of the program. We will talk about other

types of comments later. The computer knows that this portion

of the code is a comment because it starts with /*. Everything

after these two characters until the two characters */ are

encountered is ignored by the compiler and treated like a

comment.

#include <stdio.h>

This line is a directive to include a standard C header file.

There are some pre-written functions in C that we commonly

use. All the functions that control standard input and output

are included in the file stdio.h. When we include this file, we

are allowed to use these functions. These functions allow us to

print information to the screen and read in information from

the user. Nearly all of your programs will include this line.

(There are many other files which can be included in for your

programs as well.)

int main(void) {

This line signifies the beginning of the function main. All code

in C resides in functions. You can think of functions as all

being separate little programs. main is a special function. It is

the only function that automatically EXECUTES. A program

may be made up on many functions, but the computer only

DIRECTLY executes main. In order for the computer to

execute any other function, main must give instructions to call

those functions. All functions are signified by a return type,

(which is int for this function), a name (which is main for this

function), and a paramter list in parentheses (which is void for

this function). After this listed information, the curly brace {

signifies the beginning of the function. A corresponding curly

brace } ends the definition of the function.

printf("COP 3223 Rocks!\n");

This line calls a function printf which resides in stdio.h. The

way this function works is that it prints out any string

contained in between two sets of double quotes. However, it

does not print all the characters above as seen to the screen.

There are a few characters which have special codes, called

escape sequences. These characters all start with a backslash: \.

The code \n stands for a newline character. That simply tells

the computer to advance the cursor to print information to the

screen to the left hand side of the new line. This line will simply

print:

COP 3223 Rocks!

to the screen and advance the cursor to the next line so that the

next piece of information printed will start printing directly

below the C instead of right after the !.

return 0;

Each non-void function must return a value of the proper type.

For most functions except for main, this return value is

meaningful. But for the function main, this value is of little

significance and is only included so that the program has

proper syntax.

}

This simply signifies the end of the function main.

Side Note about Main and Sequential Execution

For your first few weeks, your programs will only comprise of

one function: main. When your compiled program executes, it

will simply execute each instruction in main in order, and

finish when it hits the ending curly brace for main. One of the

key concepts of this class is understanding sequential

execution. Namely, each program specifies exact instructions

for the computer to execute in a particular order without

ambiguity. When writing your programs, you must take this

into account. You must be precise about the statements you ask

the computer to execute and exactly which order you want

them to execute.

Variables

Computers are powerful because they can manipulate data.

However, the computer must have a standardized manner of

storing information. Primitive data types native to the C

language aid this standardization. In particular, in order to

store data in a C computer program, you must store it one of

the primitive data types given by C. Of these data types, the

most common ones you will use are:

int, char, float, double

A type specifies what will be stored.

For example, an int stores an integer in between -231 and 231-1.

Typically, most applications don't compute integers outside of

this range, so you can mostly think of an int as storing an

integer.

A char stores a single character. A character includes any key

on the keyboard, along with a few "special" characters that

are not necessarily printable. Incidentally, all characters are

stored inside the computer as integers in between 0 and 255.

The numeric value of a character is known as its ascii value.

We'll talk more about these later. Strings, which we will often

use, technically are not primitive data types, but are rather

several char variables strung together.

float and double store decimal numbers to varying precision.

floats store decimal numbers to about 6 or 7 digits of precision,

while doubles store decimal numbers to about 13 digits of

precision.

How to use a variable in a program

In order to use a variable in a program, you must first declare

the variable. Once you declare it, typically, you should

initialize the value of the variable. These two things can be

done in one step. Here is an example of a variable declaration:

int feet_in_mile;

After this line is executed, the computer allocates space for an

integer variable. The name given to that space is

feet_in_mile. Pictorially, we have something as follows:

feet_in_mile

Based on this line of code, the variable (the box) may store any

value. We can initialize the value as follows:

feet_in_mile = 0;

This tells the computer to take the value on the right of the =,

and store it in the variable to the left of the =.

Note that all statements in C end in a semicolon. (Occasionally,

you will see situations that seem to contradict this rule, but in

fact, in those situations, the structure in question turns out not

to be a single statement.)

The picture after this statement is as follows:

feet_in_mile

0

Once a variable has a value, it can be used in statements for

computational purposes. First we will show a sample program

that uses variables, then we will discuss common practices with

variables, assignment statements and arithmetic expressions.

(These are the separate components of the following program.)

/* Arup Guha

 My Second C Program

 8/26/04

 Computes the number of feet in a mile */

#include <stdio.h>

int main(void) {

 int feet_in_mile, yards_in_mile;

 int feet_in_yard;

 yards_in_mile = 1760;

 feet_in_yard = 3;

 feet_in_mile = yards_in_mile*feet_in_yard;

 printf("Mile = %d Feet.\n", feet_in_mile);

 return 0;

}

The first two lines of the program declare all the variables for

the function main. All variables inside of a function must be

declared at the beginning of the function. Thus, after these two

lines, our pictures looks like:

feet_in_mile yards_in_mile feet_in_yard

Note, these boxes may NOT be contiguous in the computer's

memory. I have only drawn them this way because it's easier

for me to do so.

The next two lines initialize the variables yards_in_mile

and feet_in_yard. Here is the picture after these two lines

are executed:

feet_in_mile yards_in_mile feet_in_yard

 1760 3

The next line is an assignment statement. (Technically

speaking, so are the two previous lines we just went over.) The

syntax of an assignment statement is that a variable is always

on the left hand side of an equal sign, and an arithmetic

expression is always on the right hand side, followed by a

semicolon. The order of execution is as follows:

1) The value of the arithmetic expression on the right is

determined using the current values of the variables in this

expression. Note: There may also be constants in this

expression.

2) This value is then stored in the variable on the left hand

side.

Using this procedure, we evaluate the expression:

yards_in_mile*feet_in_yard

This evaluates to 1760*3, using the current values of each of

the respective variables. Simplifying this numerical expression

we get 5280. Finally, this value is stored in feet_in_mile.

The picture after this step is as follows:

feet_in_mile yards_in_mile feet_in_yard

5280 1760 3

Finally, the last line prints out some information to the screen.

Up until now, we only talked about how to print characters to

the screen. But now, we would like to print the value of a

variable to the screen. In order to do this, we must specify the

format of the variable. %d is the format for an integer

variables. A list of format codes is given in the text on page 16.

(Note: The code for a float is %f, and a double is %lf.) This

code tells the computer what type of variable will be printed.

After the ending double quote, the actual variable itself must

be specified. This is done by first typing a comma, followed by

the name of the variable. The printf function call must then be

closed with a close parethesis.

The end result of running this line the statement:

Mile = 5280 Feet.

will print to the screen.

