
Couple Notes about Boolean Expressions in C

Not(!) operator

Although the boolean operator "not" (!) is supposed to simply

operate on boolean expressions, technically speaking, C does

not have a type "boolean." In C, a boolean expression is

actually an integer with a value of 1 or 0.

Thus, even though it seems strange, the statement

x = (x > y);

would be perfectly valid in C (assuming that x and y were

integer variables.)

My advice would be to avoid using boolean expressions in

places where one would typically expect arithmetic

expressions. Similarly, avoid using arithmetic expressions in

places where one would typically expect boolean expressions.

An example of this is as follows:

if (x)

 x++;

else

 x--;

Here, if x were 1 before the code started, x would change to 2.

If x were 0 before the code start, it would change to -1. The

expression !!5 evaluates to 1. This is quite confusing and code

that involves such an expression should be avoided.

Short-Circuit Evaluation

When a C compiler encounters complex boolean expressions

involving either && or ||, it attempts to do as little work as

possible. For example, consider the following sequence of

statements:

int age, fakeid;

age = 21;

fakeid = 0;

if ((age >= 21) || (fakeid == 1))

 printf("You can drink at the bar!\n");

The compiler evaluates the expression inside of the if statement

from left to right and first determines that (age>=21) is true.

Then it sees that it is supposed to calculate the value of true

"or" another expression. Regardless of whether that other

expression is true or not, it's clear that the overall expression is

true.

Since this is the case, the compiler never even TRIES to

evaluate the second expression, it simply skips doing so and

moves onto the printf.

If you think about it, in real life, if you were trying to figure

out if someone could drink in a bar, once you knew they were

21, you wouldn't need to know if they had a fake ID or not!

Similarly, if a boolean expression is the and of two smaller

expressions, if the first is false, the second is never even

evaluated. Although this seems like a trivial detail, in some

situations (in later examples), it will help us to shorten our code

and avoid run-time errors.

Compound and Empty Statements

I mentioned a block of statements in reference to the if-

statement in the last lecture. A block of statements is simply

denoted by matching curly braces:

{

 stmt1;

 stmt2;

 ...

 stmtn;

}

Typically, we will indent all the statements that are part of a

block of statements. Syntactically, C treats a block of

statements as a single statement. This is how we can get more

than one line of code executed if the boolean expression in an if

statement is true.

The empty statement is simply denoted by a semicolon and

does nothing:

;

A valid example of the use of this statement is as follows:

if (done == 1)

 ;

else

 printf("Hello World.\n");

The empty statement is hardly ever necessary. (You can write

code without it that does the same thing.)

If Statement Example

Write an short C program (without comments) that reads in

the dimensions of a room (length x width) and also reads in the

size of a desk (length x width) and determines if the desk can

fit in the room with each of it’s sides parallel to a wall in the

room. (This simply precludes the possibility of placing the desk

diagonally. The problem becomes much more difficult if you

allow this.) Assume the user enters positive numbers for each

of the four dimensions.

#include <stdio.h>

int main() {

 int roomlen, roomwid;

 int desklen, deskwid;

 printf("Enter the length and width of the room.\n");

 scanf("%d%d",&roomlen, &roomwid);

 printf("Enter the length and width of the desk.\n");

 scanf("%d%d",&desklen, &deskwid);

 if ((deskwid <= roomwid) && (desklen <= roomlen))

 printf(“The desk will fit in the room.\n”);

 else

 printf(“The desk will not fit in the room.\n”);

 return 0;

}

Will this work in every situation? Why or why not?

Okay, here is my new solution. Will this work?

#include <stdio.h>

int main() {

 int roomlen, roomwid;

 int desklen, deskwid;

 // Read in room and desk dimensions.

 printf("Enter the length and width of the room.\n");

 scanf("%d%d",&roomlen, &roomwid);

 printf("Enter the length and width of the desk.\n");

 scanf("%d%d",&desklen, &deskwid);

 //Adjust lengths and widths, if necessary

 if (roomlen < roomwid) {

 roomlen = roomwid;

 roomwid = roomlen;

 }

 if (desklen < deskwid) {

 desklen = deskwid;

 deskwid = desklen;

 }

 // Compare corresponding dimensions and output result.

 if ((deskwid <= roomwid) && (desklen <= roomlen))

 printf(“The desk will fit in the room.\n”);

 else

 printf(“The desk will not fit in the room.\n”);

 return 0;

}

Here is my final version, taking into account the correct way to

swap the value of two variables.

#include <stdio.h>

int main() {

 int roomlen, roomwid;

 int desklen, deskwid;

 int temp;

 // Read in room and desk dimensions.

 printf("Enter the length and width of the room.\n");

 scanf("%d%d",&roomlen, &roomwid);

 printf("Enter the length and width of the desk.\n");

 scanf("%d%d",&desklen, &deskwid);

 //Adjust lengths and widths, if necessary

 if (roomlen < roomwid) {

 temp = roomlen;

 roomlen = roomwid;

 roomwid = temp;

 }

 if (desklen < deskwid) {

 temp = desklen;

 desklen = deskwid;

 deskwid = temp;

 }

 // Compare corresponding dimensions and output result.

 if ((deskwid <= roomwid) && (desklen <= roomlen))

 printf(“The desk will fit in the room.\n”);

 else

 printf(“The desk will not fit in the room.\n”);

 return 0;

}

Here is another way to solve the same problem:

#include <stdio.h>

int main() {

 int roomlen, roomwid;

 int desklen, deskwid;

 int temp;

 // Read in room and desk dimensions.

 printf("Enter the length and width of the room.\n");

 scanf("%d%d",&roomlen, &roomwid);

 printf("Enter the length and width of the desk.\n");

 scanf("%d%d",&desklen, &deskwid);

 // Check both ways of putting the desk in the room and

 // output the result.

 if ((deskwid <= roomwid) && (desklen <= roomlen))

 printf(“The desk will fit in the room.\n”);

 else if ((deskwid<=roomlen) && (desklen<=roomwid))

 printf(“The desk will fit in the room.\n”);

 else

 printf(“The desk will not fit in the room.\n”);

 return 0;

}

Switch Statement

This statement, just like the if statement, allows for conditional

execution. The general construct is as follows:

switch (<integer expression>) {

 case <value1>:

 <stmts1>

 break;

 case <value2>:

 <stmts2>

 break;

 ...

 default:

 <stmtsn>

}

stmtA

The manner in which this expression is evaluated is as follows:

1) The integer expression is evaluated.

2) If this expression is equal to value1, then <stmts1> are

executed and the break statement carries the execution to

stmtA.

3) Otherwise, each value is compared th the integer expression

value until one is found to match. At that point, the

corresponding set of statements is executed and then the break

carries execution to stmtA.

4) If no listed value is equal to the value of the expression, then

the default case is executed.

Couple notes: The lists of values may not include ranges of

values, but only single values. Also, the break statements are

not required, but without them, then several cases may get

executed.

This generally limits the use of case statements to situations

where you know an expression will equal one of a few integer

values and based on that want to execute a certain segment of

code. You can emulate a case statement with an appropriate if

statement.

Here is an example of a case statement:

switch (answer) {

 case 1:

 printf("You have selected #1.\n");

 break;

 case 2:

 printf("You have selected #2.\n");

 break;

 case 3:

 printf("You have selected #3.\n");

 break;

 default:

 printf("Invalid selection.\n");

}

