
For Loop

C contains loop constructs other than the while loop. One of

these constructs is the for loop. Here is the general syntax:

for (<init stmt>; <boolean expression>; <increment stmt>)

 stmt;

As mentioned with the while loop, usually, there is more than

one statement in the body of a for loop, thus, we will usually have

a block of statements:

for (<init stmt>; <boolean expression>; <increment stmt>) {

 stmt1;

 stmt2;

 ...

 stmtn;

}

stmtA;

Here is how the computer executes the for statement:

1) Execute the initial statement.

2) Evaluate the boolean expression.

3) If it's true, execute statements 1 through n.

4) Do the increment statement.

5) Then go back to step #2

6) If it's false, skip over the loop body and continue

execution with stmt A.

Same Examples Using a For Loop

#include <stdio.h>

int main() {

 int val ;

 int sum = 0;

 for (val = 1; val < 100; val = val+2) {

 sum = sum + val;

 }

 printf("1+3+5+...+99=%d\n",sum);

 return 0;

}

#include <stdio.h>

#define TIP_RATE 0.15

#define MAX_PRICE 100

int main() {

 int m_value;

 double tip_amt;

 // Print out all tips until the maximum meal value.

 for (m_value=1; m_value <= MAX_PRICE; m_value++) {

 tip_amt = m_value*TIP_RATE;

 printf("On a meal of $%d, you should tip $%.2lf\n",

 m_value, tip_amt);

 }

 return 0;

}

How to choose between a for and while loop

First, it should be noted that anything you can do with a for loop,

you can also do with a while loop. But, in certain situations, a

for loop is more succinct and easier to read than a while loop

that would do the same thing. In the example from the last page:

 for (val = 1; val < 100; val = val+2) {

 sum = sum + val;

 }

from that first line, we can immediately see the structure of the

loop (in particular how many times it's going to run.) All

information that determines all the loop iterations are neatly

placed in one place. In the corresponding while loop, you have

to look at three different places to get that information.

Thus, based on this example, it can be seen that loops that run a

particular number of iterations based on the value of a variable

translate well into for loops. Especially if the task you are

completing uses the index variable for some calculation.

Here is an example of such a situation:

Let's assume we are trying to print out a triangle to the screen

that looks like this:

*

**

...

Notice that when we print out ith line, we also want to print i

stars on that line. (Assume that row is declared at the beginning

of the function.) That gives us this skeleton of code:

for (row=1; row<=10; row++) {

 //print row stars on one line

}

Now, the question becomes, how do we print a line with row

stars. Well, can't we just do a for loop? (Assume that col is also

declared at the beginning of the function.)

for (col=1; col<=row; col++)

 printf("*");

So, we have the following:

for (row=1; row<=10; row++) {

 for (col=1; col<=row; col++)

 printf("*");

}

Is there a problem with this?

Since we never print out a newline character, all of our stars will

print out in the same row. Instead, when we print a row, we need

to finish by also printing a newline character. Here is the fix:

for (row=1; row<=10; row++) {

 for (row=1; col<=row; col++) {

 printf("*");

 }

 printf("\n");

}

(Incidentally, note that the inner set of parentheses aren't

necessary, but the outer ones are. Why?)

