
File Input/Output

Up to this point, you have been testing your programs by

entering input from the keyboard. Although this works fine for

small sets of input, this would be very time consuming for

processing large amounts of data. Furthermore, large amounts

of data often already exist in text files. It would certainly be

wasteful to type these data in by hand while running a

program when they are already available in a file.

As you might imagine, C provides the ability to read from files,

(AND write to files.) In fact, when we read information from

the keyboard and wrote information to the screen, we

primarily used the functions

printf

scanf

Similarly, for reading from files and writing to files, we'll use

the functions

fprintf

fscanf

The first f in each of these function calls stands for "file."

Here is the specification for each function:

fprintf(file_ptr, ctrl_str, other_arguments)

fscanf(file_ptr, ctrl_str, other_arguments)

You'll notice that these are identical to printf and scanf

EXCEPT for the first parameter.

How to Create a File Pointer

In order to read from a file, or write to a file, you MUST use a

pointer to that file. Here is a declaration of a file pointer:

FILE *ifp;

In order to properly "initialize" an file pointer, it must be set

to point to a file. In order to do this, we must specify the

following:

1) Name of the file

2) Mode ("r" for read or "w" for write)

There is a function call that uses this information to open the

appropriate file and return a pointer to it. It's name is fopen.

Here is an example of its use:

ifp = fopen("input.txt", "r");

You'll notice that the first parameter to the fopen function is a

string storing the name of the file to be opened. The second

parameter is also a string. For our purposes, this string will

either be "r" or "w". (There are other possibilities for this

second parameter, but we won't deal with them in this class.)

When we open a file in "r" (reading) mode, the file should

already exist and the fopen function returns a pointer to the

beginning of that file. If the file doesn't exist, fopen returns

NULL.

How to Read from an Input File

This works nearly the same as reading from the keyboard. In

fact, imagine pre-typing all of your responses you would type

in the keyboard into a file and then running a program that

read from that file instead of the keyboard. In that situation,

the new program would work identically.

Every time you use the fscanf function to read in a piece of

information from a file, the file pointer reads in the next token,

returns it and advances to the following token. Here is an

example of how to read in an integer from the file we

previously opened:

fscanf(ifp, "%d", &num);

The first parameter tells the computer to look to where ifp is

pointing instead of the keyboard. The rest works the same.

Imagine that the file we just opened, "input.txt" contains

several integers separated by white space, with the end of the

data being signified by a 0. Here is how we would read in and

sum all the numbers from the file:

FILE *ifp;

int num = -1, sum = 0;

ifp = fopen("input.txt", "r");

while (num != 0) {

 fscanf(ifp, "%d", &num);

 sum += num;

}

fclose(ifp);

Closing a file

You'll notice that the last line above uses a new function call,

fclose. All files that are opened must also be closed. In order to

close a file, you must simply pass the file pointer to the file you

want to close into the fclose function. Forgetting to close a file

may corrupt the contents of that file.

Here is a complete program that reads in a file containing

numbers and outputs their sum to the screen:

#include stdio.h

int main() {

 FILE *ifp;

 int num = -1, sum = 0;

 ifp = fopen("input.txt", "r");

 while (num != 0) {

 fscanf(ifp, "%d", &num);

 sum += num;

 }

 fclose(ifp);

 printf("The sum is %d\n", sum);

 return 0;

}

Example: Writing to a File

Imagine that you wanted to write some output to a file.

Consider editing the program we looked at a couple lectures

ago that counted up the frequencies of each alphabetic

character in a file and printed out a chart to the screen so that

it wrote the chart into a file. Here are the changes we would

make to the main function and the printchart function:

int main() {

 int freq[26];

 FILE *ofp;

 init(freq);

 readinput(freq);

 ofp = fopen("charfreq.txt", "w");

 printchart(freq, ofp);

 fclose(ofp);

 return 0;

}

void printchart(int freq[], FILE *ofp) {

 int index;

 fprintf(ofp,"Letter\tFrequency\n");

 for (index = 0; index<26; index++) {

 fprintf(ofp,"%c\t%d\n",(char)('a'+index),

 freq[index]);

 }

}

Secret Code Message Example

One of the types of codes employed to hide the meaning of a

message many, many years ago involved substituting the first

letter in the alphabet for the last, the second letter for the

second to last, etc.

Essentially, the following chart shows a list of substitutions:

Letter A B C D E F G H I J K L M

Code Z Y X W V U T S R Q P O N

Now, imagine writing a program that took in a plain English

file and outputted a file containing only the letters in the

previous file in code, according to the code above. Here are the

steps we'd have to go through:

1) Open both files.

2) Read from the input file character by character.

3) For each character, if it is alphabetic, determine it's

corresponding code letter and output that to the output file.

To make the output file a bit neater, we will place a newline

after 60 characters have been written to a line.

In this example, the functions fgetc and fputc will be used.

Here are the prototypes for both:

// Gets the next character from the file

// pointed to by fp and returns it.

int fgetc(FILE *fp);

// Writes c to the file pointed to by fp.

int fputc(int c, FILE *fp);

#include <stdio.h>

int main() {

 FILE *ifp, *ofp;

 int cnt = 0, c, codechar;

 // Open both the input and output files.

 ifp = fopen("fruit.c","r");

 ofp = fopen("fruitcode.txt", "w");

 // Continue reading in characters till the

 //end of the input file.

 while ((c =fgetc(ifp)) != EOF) {

 // Only process alphabetic characters.

 if (isalpha(c)) {

 // Write out the encoded character to

 // the output file.

 codechar = ('Z' - toupper(c)) + 'A';

 fputc(codechar, ofp);

 // Add a newline character if 60

 //characters have been written to

 // a line.

 cnt++;

 if (cnt%60 == 0)

 fputc('\n', ofp);

 }

 }

 fclose(ifp); // Close both files.

 fclose(ofp);

}

Questions to Think About

1) How does the encoding work in the line that assigns

codechar?

2) How does the adding of the new line work?

3) How can we adapt this program to include all non-

alphabetic characters unchanged and not change the case of all

the alphabetic characters?

4) If we did #3, could we decode the file exactly?

