
Some Common Mistakes

This list is based off examples I have seen from students' code

as well as examples that the TAs have seen.

1) if (ans == 'D' || 'd')

Or connects two boolean expressions. For the example above,

theses two expressions are

a) ans == 'D'

b) 'd'

The first evaluates to either 0 or 1, based upon what is stored

in ans. The second is a character literal. This particular

character has an ascii value of 100, so the second expression

ALWAYS evaluates to 100, which is ALWAYS TRUE.

What should have been typed is the following:

if (ans == 'D' || ans == 'd')

2) Missing brackets

This is self-explanatory. When you want more than one

statement in a construct, you must place braces to indicate the

beginning and end of the block within the construct.

One good technique to prevent this from being a problem is

ALWAYS placing matching braces for ALL constructs before

typing any code inside of the constructs, like so:

while (ans != 'Q') {

}

3) value = value;

While this statement will do NO harm, it won't do any good

either. All this statement does, is evaluate whatever is stored in

the variable value, and then stores that value back into value.

It just stores the same thing into value, so no effect occurs from

this statement.

4) while (ans != 'Q' || ans != 'q')

This statement ALWAYS evaluates to true. If ans stores 'Q',

then the first part of clause is false, but the second part is

TRUE! If ans stores 'q', then the first part of the clause is

TRUE. Basically, this is always true because ans can't be equal

to two different values at the same time!!!

Here's what should be done:

while (ans != 'Q' && ans != 'q')

5) if (a > b > c)

The way this is interpreted is as follows:

((a > b) > c)

The expression a > b is evaluated and will always return either

a 0 or a 1, for true or false. THEN this value, 0 or 1, will be

compared with c. Sure, it will evaluate to something, but it

won't be what was logically intended. Here's how it should

have been written:

if ((a > b) && (b > c))

6) if (ans == D)

This is an error if ans is a variable of type char and we want to

see if it stores the character literal 'D'. Character literals are

designated by single quotes. A literal is a single value where as

a variable stores a value, and that value can change from time

to time, but a literal does not change.

There's a key difference between doing something like:

if (value == 2)

and
if (value == number)

Namely, number could stand for any integer, whatever

happens to be stored inside of it. But, 2 can only stand for 2.

See, you would never think of declaring:

int 4;

so you shouldn't try to declare

char D;

If you just wanted to refer to the character 'D'.

Similarly, string literals are always between double quotes.

