What To Expect From This Class

This class is designed for students who have never written a program in a high-level computer language. However, unlike other introductory courses, simply reading the book and memorizing "facts" won't necessarily lead to success in this course.

The first goal of this class is for students to understand the syntax and semantics of C. This sounds complicated, but let me break this down:

1) Syntax: The rules of the language. In English class, you learn rules one must adhere to in order to speak proper English. Similarly, C has rules that you must follow, otherwise your program can not be executed.

2) Semantics: The meanings of the symbols and expressions of the language. Not only do you have to follow the rules of syntax of C, but you will also have to learn WHAT those grammatically correct C statements MEAN to the computer.

This understanding is the basic goal of the class. However, just because you understand the syntax and semantics of a computer language doesn't guarantee that you'll be effective using it to solve problems. Similarly, one can speak grammatically correct English that has some meaning, but doesn't effectively communicate the solution to a problem.

The ultimate goal of the class is for students to be able to take the tools provided by the C language and use them to write programs that solve various problems that range from simulating a real-life situation to carrying out mathematical calculations.

So how can I succeed at this?

This answer, as with most other aspects of life is practice. Although I will only assign 6 programming assignments, in reality, this is simply not enough to ensure that a beginning programmer will feel comfortable solving new problems. Reading the textbook is important, but writing extra programs on your own is even more important to succeeding in this class, especially if you have never programmed before.

Furthermore, many lectures will involve looking at programs, some of which are reasonably long. Typically, it's difficult to understand exactly how these programs work unless you run them yourselves. Also, it's usually instructive to take a program given in lecture, cut-n-paste it into your compiler, and edit it to see what changes occur in execution. In this manner, you can get a better feel for what particular statements in C do.

Also, it's important to note that some people write programs much, much faster than others. This is simply a fact of life. For whatever reason, whether it is experience or getting the hang of things quickly, there will be students who find the assignments in this class very easy. This should be irrelevant to other students. It's important to spend the time YOU need to understand the material to the point that you can produce programs to solve problems. It's okay to spend more time than others. Be aware that this is simply part of the learning curve of jumping into a new discipline. If you feel that you are taking a particularly long amount of time to learn the material and write programs, please come and see me. Perhaps I can give suggestions that will speed up your learning process. Make sure you see me and the TAs when you run into problems!!!

Summary of Results from Fall 2007 Data Collection

1) Both men and women do equally well in the course. Also, race is not a factor in course performance.
2) There is some correlation between prior programming experience and course performance, but not in the expected manner. Students who do best are the ones who have some experience with a scripting language, such as HTML. These students do even better than those with prior programming experience but no scripting experience.
3) Classroom attendance is correlated with course performance. BUT, only students who attended more than 80% of the courses reaped any significant benefit.

4) There was no correlation between office hour attendance and course grades.

5) Quiz Program participation (which was optional last semester) correlated strongly with program grades and course grades. This correlation was strongest for beginning students. As a consequence, I am requiring some quiz programs for all students this semester.

So, what this basically means is to succeed in the class you ought to:

1) Come to Class almost ALL the time.

2) Do the Quiz Programs.
***NOTE: Since this document was written, due to last of ample TA time, I have done away with requiring the quiz programs. Instead I strongly encourage students to do them!!!

Addressing Some Comments from Student Evaluations

"The study time for this class is double of that of my regular classes."

This may be true for some students. It's important to understand that even though the word, "Introduction" is in the title, this is a demanding class. This is the type of class where some students won't read the book and will be able to figure out a program in 15 minutes while others read the book and still take up to 8 hours on the same assignment. For whatever reason, some students are better problem-solvers than others. It's important for students who have difficulty to write as many practice programs as possible. Unfortunately, this takes time, often times more time than another class would take. This is the nature of the subject matter and it's important that students know this up front before they dive in.

"It's difficult to grasp new concepts when we only have lectures."

It would be nice if we had the resources to provide a lab section with computers for all the students in this class, but unfortunately we don't have those resources. This means that all the instruction for the course is through lecture, which is not ideal for a programming course. The best way to cope with this restriction is to write practice programs. You are encouraged to work on the practice programs posted on your own. In addition, if you write other practice programs, you can come to the TA or any of the course instructors to get feedback on the practice you've done. Also, coming to the TA and Instructor when you have general questions not related to a homework assignment can be very helpful. I probably sound like a broken record by now, but even though I say this 100 times, I usually only see about 2% of students in my office showing me extra practice programs they have written. Those 2% always do very well in the course. I'd like to see this number become higher; I promise I'm a nice guy and will be helpful!
"Some TAs don't understand English very well."

This may be true. Most of our Ph.D. students are on contract and must work as a TA in some capacity. Unfortunately, very few American students even apply for our Ph.D. program. This means a majority of the TAs in the CS department come from other countries. Most of these students have a solid understanding of written English, but may have some difficulty understanding quickly spoken English or slang. In order to communicate effectively with the TAs in the course, you may have to speak clearly and rephrase your question if you see that they misunderstood it. You'll find that once you make this effort, and make a concerted effort to understand their English, that communicating with them will be quite doable.

"The book made things confusing at times."

The book isn't incredibly friendly, but it does a very solid job of explaining the material in specific technical terms. Based on my experience, students don't have enough practice reading technical texts, so they say the book is written poorly without truly trying to read it. (This may mean rereading the same three pages five or six times.) Once you practice this skill more, the better you will be at reading textbooks. This type of skill is indispensable in the workplace, where anytime you run into a problem, you are expected to be able to "look it up." If you are having trouble with a passage, come into office hours and have either a TA or an instructor explain the passage.

"A little less time for the first programs and more for the later ones."

Students will find that the later programs are more demanding and that they will spend more time on them than earlier ones. One reason for this is that it takes a while to get through enough material to assign a reasonably complex program, but after you get over that hump, it's very easy to assign programs that are quite difficult! Be prepared for this change. We may try to post programs early, so that students can get an early start, but when we do this we may not have already covered what is necessary to solve the future program.
"I didn't feel like I really learned how to write code from the lectures."

Very accurate comment. You can't learn to write code from these lectures. You can only do so by writing programs. (Just like you can't learn how to hit a baseball even if I stood up here for four hours describing every detail about the mechanics of a baseball swing.) The lectures will explain the rules of the C language. In order to succeed on programming assignments, you'll have to "figure out" how to arrange C statements to solve the desired problem. The main way in which students get better at putting together C statements to solve problems is through practice.

"For someone with no programming experience, the class started at a good pace but midway shot out and left those with little or no experience behind."

This is true. The class does get more difficult towards the end. Expect this to be the case. On the other hand, once students are comfortable with some of the basics of C, it should be easier to incorporate new aspects of the language into an already existing understanding of the language. The point where students typically start having difficulty is functions, and the use of pass by reference parameters. Be prepared to spend a bit more time understanding ideas at the end of the course: pointers, structures and linked lists.

"The tests didn't seem indicative of the skills needed to write programs. The tests were much harder than writing programs and what was explained in class."

In some ways the tests do gauge different skills than the programs. If they were to gauge the exact same skills, why should both be given? The types of questions students typically complain about are questions that seem "tricky." An example of this is where the answer to a question changes based upon whether there is one equal sign or two equal signs. The reason I pose these questions is that the compiler follows certain rules exactly. If you don't know these rules and can't replicate them, you are more likely to have trouble spotting problems in your program. I ask questions about the rules of the C language, even if the rules are very specific because the understanding of these rules is essential for students to become good at debugging their programs.

"Policy on adjusting letter grades makes it difficult to predict exactly how semester will turn out."

I have difficulty perfectly controlling the level of difficulty of my exams. Rather than accidentally give a hard test and not be able to adjust my grading scale, I allow my grading scale to be flexible all semester so that I can be fair in giving grades in spite of the fact that I may accidentally give a difficult exam. Typically, the low A for the course ranges from 83 to 87, and a low B is close to 70, while I like to set my C line around 55.

