
What is a Function? 

 
A function is a subprogram that completes a specific task.  

 

In fact, main is really just a function. It's special in that it IS 

the only function that is directly executed. 

 

main's specific task is to run the entire program. 

 

However, in writing a program you may find it useful to use a 

function. Once a function is written (we'll talk about how to do 

this a bit later), we can use it. In fact, if someone else has 

written a function for us, we can use it as well! 

 

All you have to do to use a function is adhere to the rules of 

CALLING that function. When we are calling a function, an 

analogy that might simplify our work is the black box analogy. 

You can think of a function as some sort of device you don't 

necessarily understand the inner workings of, such as a cell 

phone, the inside of which, is essentially a black box to you 

since you don't understand all the complex math and the 

materials that goes into transforming sound energy into 

electrical energy and then sending that signel through the air, 

etc. BUT, most of you can use a cell phone perfectly well. 

 

All you have to do is follow the directions: For example, if you 

want to make a call, dial in the 10 digit number and then hit 

the send button.  

 

In order to use a function, the rules we will have to follow are 

as follows: 

 

1) Give the function information it needs to finish its task. 

2) Use the information the function returns properly. 



Pre and Post-conditions 

 
I will talk about these more as we see examples of functions, 

but I want to at least give you an idea of what pre and post-

conditions are, and why they are important. 

 

One analogy that I often use to describe a function and its 

relationship to an program is a boss/employee analogy. 

 

Consider that you are the boss of a company. Now, as we all 

know, the boss does NOT do all the work. (In fact, many would 

argue that they do little compared to others involved in the 

company!) However, the boss must have a good idea of the goal 

of the company, and also have a “game plan” for achieving 

that goal. 

 

Certainly, there is too much work for the boss to do all by 

himself. However, he has employees!!! Thus, the boss’s job is to 

find a way to utilize these employees so that he can achieve the 

company’s goal.  

 

This sounds easy enough, but there is some difficulty here. 

First of all, it seems extremely unlikely that each employee will 

understand the “big picture” the way the boss needs to. It 

would be difficult to understand the “big picture” AND be able 

to carry out specific tasks with the attention to detail that the 

employee is expected to observe. Thus, the boss can not assume 

that the employee understands what the overall goal of the 

company is and how his/her specific task relates to that goal. 

(Granted this should never be true in real life, but it aids my 

analogy, so play along!!! It will make more sense when I talk 

about the black box analogy.) 

 



Also, the boss needs some way of conveying to the employee 

what he/she needs to do, so that the boss can be guaranteed 

that the employee is doing the right job, without having to 

spend extra time to check up on the employee. This means that 

there must be a way to specify the employee’s job without 

ambiguity.  

 

Consider this situation: Let’s say the employee has some 

training and can do certain tasks. What the employee can do is 

tell the boss his capabilities, ie. what tasks he is capable of 

performing. In particular, the employee can tell the boss that 

“if these conditions hold..., then I will guarantee that I will do 

this.... for you.” 

 

In essence, one analogy we can use is that the employee has a 

contract. In that contract, the boss must meet certain 

requirements, (ie. provide health care, proper working 

conditions, etc.), and in return, the employee must provide 

something(build chairs, fix the assembly line when its broken, 

etc.).  

 

This contract is made up of a pre-condition and a post-

condition. This is the same the specifications for how a 

procedure or function works. Each procedure or function you 

write MUST have a list of pre-conditions and post-conditions. 

The contract is that IF the function’s pre-conditions have been 

met by the function caller, THEN the function will correctly 

execute some task, as specified by the post-condition.  

 

First, we will talk about how to call a function. In calling a 

function, we MUST adhere to the pre-conditions if we are to 

expect the function to work properly. If we don’t, there is no 

guarantee as to what the function will do. 

 



How to Call a Function 

 
In some sense, you already know how to call a function. We've 

been calling pre-written functions in C (printf, scanf, sqrt, abs, 

etc.) for a while now. But, we haven't focused on the rules for 

doing so. The rules for calling a function you or someone else 

has written are the same, but now we'll carefully examine those 

rules in preparation for writing our own functions. 

 

For the time being, let’s assume that someone else has written 

functions for us, and if we decide we can use them, then we 

must properly integrate them into our program. 

 

Now, consider the following function header, preconditions 

and postconditions: 

 

// Precondition: The function takes in a single character as a 

//    parameter. The character MUST BE one of 

//    the following: ‘A’, ‘B’,’C’,’D’, or ‘F’. 

// Postcondition:The function will return a numerical value  

//     in between 0 and 4 corresponding to the  

//     parameter passed to it. 

int Comp_Grade(char grade); 

 

The function header follows the following syntax: 

 

<return type> <function name>(<parameter list>); 

 

The parameter list is a set of items separated by commas. A 

single item in a parameter list is of the form: 

 

<type of parameter>  <formal parameter name>   

 



So, for the specific example above, we see that the function 

Comp_Grade returns a int value and it takes in exactly one 

char parameter. 

 

It's very important to realize that the syntax for MAKING a 

function call is DIFFERENT than the function header looks!!! 

 

In particular, to make a valid call to this function, we would 

have to do it as follows: 

 

Comp_Grade(<some expression that evaluates to a char>) 

 

In general, a valid call to a function is as follows: 

 

<function name>(<list of actual parameters>) 

 

The list of actual parameters is a set of expressions separated 

by commas, where each expression evaluates to the 

corresponding type listed on the function header. 

 

I have now used the terms "formal paramter" and "actual 

parameter" without defining them. Let me do so now: 

 

Formal parameters: These are the ones listed in the actual 

function definition, they are essentially local VARIABLES. 

 

Actual parameters: These are the EXPRESSIONS/VALUES 

that the calling function passes to the function being called. 

 

Key differences between a function CALL and function 

HEADER: 

 

1) The return type is NOT written in the function CALL. 

2) The types of the actual parameters are NOT written in the 

function CALL. 



For this particular function, this entire expression evaluates to 

a int value. Thus, for this type of function call to be 

syntactically valid AND be useful, we must put it in a place 

where we would place a int. So, now, we will look at a program 

that makes a call to the Comp_Grade function. In particular, 

the program will calculate a student’s GPA. 

 

// The program calculates a student’s GPA, by reading 

// in information about all of their grades. 

#include <stdio.h> 

int main() {  

 // Initialize variables used to compute GPA 

 int total_points = 0, total_hours = 0, c_hours;  

         char ans = 'y', my_grade; 

 

 // Loop runs until student has entered all of their grades. 

 while ((ans == 'y') || (ans == 'Y')) { 

 

  // Get grade information for one class. 

  printf(“Enter your letter grade.\n”); 

  scanf("%c", &my_grade); 

  printf(“Enter the # of credit hours for that class.\n”); 

  scanf("%d", &c_hours); 

 

  // Recompute points and hours based on new class 

  total_points += c_hours*Comp_Grade(my_grade); 

  total_hours += c_hours; 

 

// Check to see if student has another grade to enter. 

printf(“Do you have another grade to enter?”) 

  scanf("%c", &ans) 

 } 

 // Print out final GPA. 

 printf(“Your GPA is %lf“, (double)total_points/total_hours); 

} 



 Formal and actual parameters 
 

I'll define these again: 

 

Formal parameters: These are the ones listed in the actual 

function definition, they are identifiers. 

 

Actual parameters: These are the VALUES that the calling 

function passes to the function being called. 

 

Rules that must be followed for a legal function call 

 

1) The number of actual parameters must equal the number of 

formal parameters 

2) The types of each actual parameter must match the types of 

each formal parameter, in order. 

3) Each actual parameter must be associated with the 

corresponding formal parameter in the function definition. 

4) Actual parameter may be any expression if they are pass by 

value parameters. 

 

Thus, in our example, the variable my_grade used in the 

program was the actual parameter passed to the function 

Comp_Grade. 

 

And, when we look at the function header for Comp_Grade, 

we find that the formal parameter used was grade. 

 

As far as calling the function Comp_Grade, the important 

thing to realize is that we could have passed it any actual 

parameter that evaluated to a character. So, the following is 

syntactically correct: 

 

printf(“An A is worth %d points.\n“,Comp_Grade(‘A’)); 



Class Exercise 

 
Consider the following function headers, with pre and post-

conditions: 

 

// Pre-condition:  The value of the parameter passed in must be 

//      positive and in some type of units. 

// Post-condition: The function will return the volume of the 

//       sphere with the given radius in units
3
. 

double Sphere_Volume(double radius); 

 

// Pre-condition:  The value of both parameters must be  

//      positive. The unit used for volume must 

//      be the same used in the density. 

// Post-condition: The function will return the mass of the 

//       object in the units used in the density. 

double Mass(double den,  double volume); 

 

Use these to write an program to compute the mass of a 

snowman. Read in from the user the three radii (in 

centimeters) of the three “snowballs” used to create the 

snowman. You will also have to use the following constant, 

which is in gm/cm
3
. 

 

#define SNOW_DENSITY   0.1 



#include <stdio.h> 

 

#define  SNOW_DENSITY  0.1 

 

// This program computes the mass of a snowman, based on 

// information about the snowman’s dimensions. 

int main() { 

 

     double r1, r2, r3, total_volume; 

           

      // Read in size of each snowball. 

     printf("Enter the size of each snowball in succession.\n"); 

     scanf("%lf%lf%lf", &r1, &r2, &r3); 

 

     // Compute volume of snowman 

     total_volume = Sphere_Volume(r1) + Sphere_Volume(r2) + 

        Sphere_Volume(r3); 

    

     // Print out mass of snowman. 

     printf(“Snowman mass = ”); 

     printf("%lf\n", Mass(SNOW_DENSITY, total_volume)); 

 

} 

 

 
 


