
Arithmetic Expressions in C

Arithmetic Expressions consist of numeric literals, arithmetic

operators, and numeric variables. They simplify to a single

value, when evaluated. Here is an example of an arithmetic

expression with no variables:

3.14*10*10

This expression evaluates to 314, the approximate area of a

circle with radius 10. Similarly, the expression

3.14*radius*radius

would also evaluate to 314, if the variable radius stored the

value 10.

You should be fairly familiar with the operators + , - , * and /.

Here are a couple expressions for you all to evaluate that use

these operators:

Expression Value

3 + 7 - 12

6*4/8

10*(12 - 4)

Notice the parentheses in the last expression helps dictate

which order to evaluate the expression. For the first two

expressions, you simply evaluate the expressions from left to

right.

But, the computer doesn't ALWAYS evaluate expressions from

left to right. Consider the following expression:

3 + 4*5

If evaluated from left to right, this would equal (3+4)*5 = 35

BUT, multiplication and division have a higher order of

precedence than addition and subtraction. What this means is

that in an arithmetic expression, you should first run through

it left to right, only performing the multiplications and

divisions. After doing this, process the expression again from

left to right, doing all the additions and subtractions. So, 3+4*5

first evaluates to 3+20 which then evaluates to 23.

Consider this expression:

3 + 4*5 - 6/3*4/8 + 2*6 - 4*3*2

First go through and do all the multiplications and divisions:

3 + 20 - 1 + 12 - 24

Now, do all the additions and subtractions, left to right:

10

If you do NOT want an expression to be evaluated in this

manner, you can simply add parentheses (which have the

highest precedence) to signify which computations should be

done first. (This is how we compute the subtraction first in

10*(12 - 4).)

So, for right now, our precedence chart has three levels:

parentheses first, followed by multiplication and division,

followed by addition and subtraction.

Integer Division

The one operation that may not work exactly as you might

imagine in C is division. When two integers are divided, the C

compiler will always make the answer evaluate to another

integer. In particular, if the division has a leftover remainder

or fraction, this is simply discarded. For example:

13/4 evaluates to 3

19/3 evaluates to 6 but

Similarly if you have an expression with integer variables part

of a division, this evaluates to an integer as well. For example,

in this segment of code, y gets set to 2.

int x = 8;

int y = x/3;

However, if we did the following,

double x = 8;

double y = x/3;

y would equal 2.66666666 (approximately).

The way C decides whether it will do an integer division (as in

the first example), or a real number division (as in the second

example), is based on the TYPE of the operands. If both

operands are ints, an integer division is done. If either operand

is a float or a double, then a real division is done. The compiler

will treat constants without the decimal point as integers, and

constants with the decimal point as a float. Thus, the

expressions 13/4 and 13/4.0 will evaluate to 3 and 3.25

respectively.

The mod operator (%)

The one new operator (for those of you who have never

programmed), is the mod operator, which is denoted by the

percent sign(%). This operator is ONLY defined for integer

operands. It is defined as follows:

a%b evaluates to the remainder of a divided by b. For

example,

12%5 = 2

19%6 = 1

14%7 = 0

19%200 = 19

The precendence of the mod operator is the same as the

precedence of multiplication and division.

For practice, try evaluating these expressions:

Expression Value

3 + 10*(16%7) + 2/4

3.0/6 + 18/(15%4+2)

24/(1 + 2%3 + 4/5 + 6 + 31%8)

(Note: The use of the % sign here is different than when it is

used to denote a code for a printf statement, such as %d.)

Initialization of variables

In the previous program example, we first declared our

variables and then initialized them. However, these two steps

can be done at once. Thus the lines:

 int feet_in_mile, yards_in_mile;

 int feet_in_yard;

 yards_in_mile = 1760;

 feet_in_yard = 3;

can be replaced by

 int feet_in_mile, yards_in_mile=1760;

 int feet_in_yard=3;

Generally, it is a good practice to initialize variables (when

their initial value is known.) The reason is that before you

initialize a variable, any random value could be stored in it. By

initializing the variable, you know definitively what the

variable will evaluate to at any point in your program.

Use of #define and #include

The # sign indicates a preprocessing directive. This means that

sometime is done BEFORE the compiler runs. When we do a

#include, this tells the compiler to include the given file before

compilation. If the file is part of the C library (like stdio.h is),

then the format is as follows:

#include <filename>

Other common include files in the C library are: math.h,

string.h, and stdlib.h.

If however, you want to include a file that isn't in C's standard

library, you must do it as follows:

#include "filename"

We won't be using this type of include till near the end of the

course.

What a #define does is replace a given variable name with a

value, before a program is compiled. Thus, we could change

the beginning of mile conversion program to read as follows:

#include <stdio.h>

#define YARDS_IN_MILE 1760

#define FEET_IN_YARD 3

Note that I have changed the capitalization of the variables

because the standard is to have all constant names be in CAPS.

What this does is replace each instance of YARDS_IN_MILE

with the value 1760, and replace each instance of

FEET_IN_YARD with 3 before the compiler is invoked.

Use of printf

The most simple use of printf only prints out a string literal. A

string literal is a string of characters and is denoted by the

characters inside of double quotes.

However, it is useful to print out the values stored in variables.

But, you can't put variable names inside of a string literal,

because then the variable name itself would print out:

int x = 5;

printf("the value is x\n");

will print out the value is x not the value is 5.

To deal with this, C uses conversion characters inside of the

string literal. These are denoted by a percent sign followed by a

letter. We will most commonly be using %d, %f, %lf, %c and

%s. These simply signify to print out a certain type of variable,

but not what that variable is. To clarify this point, you must

list all the necessary variables separated by commas after the

string literal. Consider the following example:

int x = 7;

float y = 3.1;

printf("x = %d, y = %f", x, y);

This will print out:

x = 7, y = 3.100000

As you can see from this example, you list the variables in the

corresponding order in which they will appear in the print

statement. If you use the wrong code, the output is

unpredictable!!!

Formatting output spacing

One other modification that can be added to the output of

variables is a field width. If you want a certain variable to

print out in a given number of spaces, then you can place that

in the conversion code. Consider the following code:

char first = 'A';

printf("%c%3c%3c\n",first,'R', 'G');

This will print out:

A R G

The 3 before the second c specifies to allocate three spaces to

print out the second character. The printout defaults to

printing the character out right-justified.

While this may not seem useful, the same type of formatting is

useful for floats. For floats, you can specify the number of

digits before and after the decimal point:

float y = 3.12;

printf("y = %1.2f", y);

will print out

y = 3.12

instead of
y = 3.120000

The first number in the percent code represents the total

length of the field while the second number represents the

number of decimals. In this particular example, since 1 is less

than the minimum field width of 4 characters, the number is

printed with 4 characters.

Something like

float y = 3.12;

printf("y = %9.2f", y);

will print out

y = 3.12

where there are an extra 5 spaces in front of the 3.12, since it's

printing out a right justified result in a field of 9 characters.

You should experiment on your own to find out what happens

with various conversion codes and when the conversion code

doesn't match the actual number of digits in the float variable

being printed.

