Conditional Expressions

Boolean Expressions: An expression that evaluates to either True or False.

The most common types of Boolean expressions are those that use relational operators. The general syntax of a conditional statement (which is a type of Boolean expression) is this:

<expression> <relational operator> <expression>

(Note: The two expressions MUST match in type!!!)

Here are the 6 relational operators we will use:

1) Equal to (==)

2) Not equal to (!=, or <>)

3) Greater than (>)

4) Greater than or equal to (>=)

5) Less than (<)

6) Less than or equal to (<=)

We will typically only compare numerical expressions. You may compare characters with these operators as well, since they are stored internally as integers. However, you can NOT accurately compare strings with these operators.

We compare characters and Strings in alphabetical order, so for example, ‘a’ < ‘b’.

Here are some examples of boolean expressions. See if you can figure out if they are true or not:

Note: Assume that we have these beginning declarations:

ch = ‘j’;

x = 6*2;

y = 3*x – 10%x;

Expression

Value

1) x + y > 40
2) ch == ‘k’

3) (x – y) != (7*(3 – x % 7))
Boolean Operators are operators that take boolean expressions as operands. The following are boolean operators available to us in Python: and, or not

The first two are take two boolean expressions as operands, and the last takes only a single boolean expression as an operand.

Let b1 and b2 be boolean expressions. Here is the syntax for complex boolean expressions put together with the boolean operators mentioned above:

(b1) and (b2)

(b1) or (b2)

not (b1)

In particular these complex boolean expressions evaluate to boolean values as well. Here are truth tables to show how to evaluate these:

	and
	T
	F

	T
	T
	F

	F
	F
	F

	or
	T
	F

	T
	T
	T

	F
	T
	F

In English, for b1 and b2 to be true, both expressions must be true.

For b1 or b2 to be true, at least one of b1 and b2 has to be true.

not simply negates the value of the original boolean expression.

If-else Construct

if <boolean expression>:

 stmt1-1

 stmt1-2

 …

 stmt1-n

else:

 stmt2-1

 stmt2-2

 …

 stmt2-n

stmtA

stmtB

The way this is executed is as follows:

1) Check if the boolean expression is true.

2) If so, go ahead and execute stmt1-1 through stmt1-n, then skip to the end of the if, starting at stmtA.

3) Otherwise, go ahead and execute stmt2-1 through stmt2-n, and go to the end of the if, starting at stmtA.

4) Continue on, executing stmtA, stmtB, etc.

Note that the computer recognizes which statements are in the if clause and are in the else clause based on indentation. Thus, each statement you want inside of either clause must be indented at the same level.

The else clause is NOT necessary. (It’s possible we only want to do something if the Boolean condition is true.)
Use of elif

if <boolean expression1>:

 stmt1-1

 …

 stmt1-a

elif <boolean expression2>:

 stmt2-1

 …

 stmt2-b

elif <boolean expression3>:

 stmt3-1

 …

 stmt3-c

else:

 stmt4-1

 …

 stmt4-d

stmtA

1) Check if Boolean expression1 is true.

2) If so, go ahead and execute stmt1-1 through stmt1-a

3) If not, go check if Boolean expression2 is true.

4) If so, go ahead and execute stmt2-1 through stmt2-b.

5) Continue in this fashion if no until one of the boolean expressions is true.

6) Now, skip over the rest of the blocks, and continue executing statements with stmtA.

Determining the slope of a line

Arup Guha

9/8/03

Program Description: This program asks the user for the

constants A, B, and C in the equation Ax+By = C for a line.

Based on this information, the algorithm will output if the

slope is positive, negative, zero, or undefined (as is the case

with a vertical line.)
def main():

 # Obtain values for a, b and c from user.
 a = input(“Enter a.\n”)

 b = input(“Enter b.\n”)

 c = input(“Enter c.\n”)

 # Take care of the invalid line case.

 if a == 0 and b == 0:

 print(“Invalid equation.\n”);

 else:

 # Handle each case (vertical, horizontal, positive

 # slope and negative slope) separately.
 if b == 0:

 print(“Vertical line.\n”)
 elif a == 0:

 print(“Slope = 0\n”)
 elif -a/b > 0:

 print(“Slope is positive.”)
 else

 print(“Slope is negative.\n”);

}

main()
