COP 3223 Exam #1 Review
Topics Covered
1. Output (print function)

2. Variables (storing ints, floats and Strings)

3. Assignment Statement

4. Input (input function, int function, float function)

5. Arithmetic Expressions (+ , -, *, /, //, %, precedence)

6. Solving “Formula” type problems

7. Writing an Entire Program in a Separate File

8. Strings (+, *, indexing, slicing with + and - indexes)

9. If Statement

Test Format
Short Answer/Multiple Choice (60 points)

Writing Programs (40 points)

No Calculator Allowed – You’ll have to calculate arithmetic expressions on your own.
You just need to bring a pen or pencil. Space to write your answers will be provided on the test you are given.
Print Function
General Syntax is as follows:

print(s1, s2, …,sn)

where s1, s2, etc. are each items to print.

Typically, we print either string literals or other expressions.

Here is an example of a simple print of one item:

print(“Hello World”)

We typically only print more than one item if we are trying to mix some text with the values of variables, as in this example:

print(“Your total cost is”,cost)

By default, Python puts one space in between each item that you list to print. If you want to avoid this, you can do the following:

print(s1, s2, …,sn, sep=””)

For your last parameter, specify a different separator by saying sep= and then following this with the separator you want. If you want no separator, just put a string with no spaces (two consecutive double quotes).

Variables

A variable is a slot in memory that can store a value during a program. As the program executes, what is stored in a variable can change. (Hence the name, “variable.”)

You must give each variable a name. In naming a variable, you can only use letters, digits and the underscore (‘_’) character and the name can NOT start with a digit.

Variables ought to be given meaningful names. For example, names like cost or tax might be good variable names (if they are storing the cost of an item and its tax). But, rarely are one letter variable names meaningful.

In Python, a variable does NOT need to be declared or fixed to a type. Rather, when you want to use a new variable, just use it. Python will figure out what type makes sense for the variable based on the context in which it’s introduced. It also follows that the type of a variable in Python can change over the course of a program. Thus, the value of a variable and its type can be evaluated at any snap shot in time.

The three types of variables we’ll be using early on in Python are: int, float, String. The int type stores integers. The float type stores real numbers and the String type stores a sequence of characters.

Without the assignment statement, variables are of little use!

Assignment Statement
The basic syntax of an assignment statement is:

variable = expression

The equal sign here is very different than the equal sign in math class. In Python (and in many other programming languages), the equal sign is the assignment operator. Here is how this statement works:

1) Determine the value of the expression at that snapshot in time.

2) Change the value of the variable on the left to the value that was just calculated.

Consider the following segment of python code:

age = 20

print(“I am”,age,”years old.”)

age = age + 1

print(“Now, I am”,age,”years old!”)

The output is as follows:

I am 20 years old.

Now, I am 21 years old!

When we get to age = age + 1, age is currently equal to 20 (this was set a couple statement ago). Thus, the value of the right hand side is 20 + 1 = 21. Then, we change the variable on the left (age) to 21. The last print reflects this.

The order of assignment statement is extremely important.

Consider the following two examples:

Example #1

length = 5

width = 7

area = length*width

print(“The area is”,area)

Example #2

area = length*width

length = 5

width = 7

print(“The area is”,area)

The second example, when interpreted, will give you an error. The problem is that in the snapshot in time that we try to evaluate area = length*width, neither length nor width have well-defined values. Thus, even though this is the correct statement, if it’s not place in the proper order, the segment of code simply won’t work correctly.
In general, Python does NOT allow you to use any variable on the right-hand side of an assignment statement for the first time. Rather, all variables on the right hand side of an assignment statement must have previously been used and set to a particular value.
Input Function

The previous example with area isn’t a terribly exciting program because each time we run it, we get the area of the same exact rectangle.

It would be nice if we could use the same program to calculate the area of different rectangles.

One way we could achieve this is if we have a function that reads in information from the user and stores this information into a variable.

In Python 3.2, this function is the input function. Here is a basic example of its use:

name = input(“Please enter your name.”)

print(“Your name is”,name)

The general syntax of the input function is that it takes in a single string (typically a string literal), which is the prompt provided to the user and returns a string, which is what the user entered.

In the example above, whatever the user enters will get stored into the variable name.

Using this syntax, we can read in strings.

As you might imagine though, much of what we’d like to read in are ints and floats.

In order to store a String into an int variable or a float variable, we must convert the String to an int or float, respectively. This can be done with the int and float functions respectively. Here are examples of their use:

age = int(input(“How old are you?\n”))

gpa = float(input(“What is your GPA?\n”))

What’s happening here is that whatever String the input function returns (which is the String the user enters), gets passed into the int or float functions. These functions then convert what was entered into an int or float respectively. Then, we take that value and assign it to the variable on the left hand side.
Arithmetic Expressions
Arithmetic Expressions are used in many places, the most common of which is the right-hand side of an assignment statement. Python has a set of unambiguous rules to evaluate arithmetic expressions.

Addition (+), Subtraction (-) and Multiplication (*) work in the usual way. If these operations are performed on two ints the result is an int. Otherwise, the result is a float.

Division is defined in two ways: Floating Point Division (/) and Integer Division (//). The former works as you might expect division to work. It carries out the division as a real number division to several decimal places, always resulting in a float for an answer. The latter works as follows:
It returns the largest integers less than or equal to the equivalent real number division. Here are some examples of both types of division evaluated in Python:

8/4 = 2.0

8//4 = 2

9/4 = 2.25

9//4 = 2

-7/4 = -1.75

-7//4 = -2

-12/4 = -3.0

-12//4 = -3

The last operator that is commonly used in Python is the mod operator(%). Mod means remainder. Thus, the mod operator returns the “leftover” when a division is made. In most standard cases, to calculate a%b, just divide b into a, and the answer is the remainder. In general, here is how it’s defined:

a%b = a – (a//b)*b

Here are some examples worked out with positive numbers only:

14%7 = 0

47%200 = 47

65%11 = 10

33%8 = 1

Here are some examples worked out with negative numbers:

-21%8 = 3

-14%-6 = -2

21%-8 = -3

-28%7 = 0

In Python, mod is defined for real numbers in addition to integers. (This differs from other languages.) The definition is the same as the one provided above (a%b = a – (a//b)*b). Here are a couple examples:
6.2%3.4 = 2.8

-14.5%4.2 = 1.5

Solving “Formula” type problems
Given the primitives we have so far, the type of problem we can solve is one that implements some sort of basic formula calculation.

The general flow of programs of this nature is as follows:

1) Read in information from the user into variables.

2) Go through a set of calculations using assignment statements to calculate the necessary information.

3) Present the desired output to the screen.

It’s important to do #1 before #2, because the variables in the program must be set to values before they are used in assignment statements. We must do #2 before #3, otherwise, we won’t know what information to display to the user.

Here is an example of a program of this nature covered in class:

cost = float(input("Enter the cost of your item.\n"))

salesTax = float(input("What is the percentage of sales tax?\n"))

totalCost = cost + cost*salesTax/100

print("The total cost with tax is $",totalCost)
Writing an Entire Program in a Separate File

The standard convention for writing programs is to put them in a separate file with a main function, followed by calling the main function. Here is the tax program rewritten in this manner:

Arup Guha

1/13/2012

COP 3223 Example: Sales Tax Calculation

def main():

 cost = float(input("Enter the cost of your item.\n"))

 salesTax = float(input("What is the percentage of sales tax?\n"))

 totalCost = cost + cost*salesTax/100

 print("The total cost with tax is $",totalCost)

main()

Note that the indentation is what defines which statements are part of the main function.

It’s necessary for us to make the call to main left-justified in the file.
Strings
A string is a sequence of characters. The easiest way to assign a string is as follows:

word = input(“Enter a word.”)

Once we have string variables, python defines a few operations.

If a and b are strings, then a + b represents their concatenation. (Concatenation means sticking the second string onto the end of the first string.)

One thing to note is that in Python, Strings (objects) are immutable. This means that once a string object is created, it never changes. But, operations like a + b end up creating new strings instead of changing either a or b.

Here is an example of using the + with strings:

first = “Hello “

second = “John!”

greeting = first+second

print(greeting)

This will output

Hello John!

The next operator defined on strings is multiplication (*). Here is an example of its use:

greeting=”Hello”
print(5*greeting)

This produces the following output:

HelloHelloHelloHelloHello

Basically, when you multiply a string by an integer, n, you get that string repeated n times in a row.

Given a string, we can extract substrings (portions) from it.

In Python, a string is indexed. The first character is stored in index 0, the second in index 1, etc. The last character in a string. If we want to retrieve a substring of a given string, we can just give a range of indexes. Consider the following example:

str = “Water”
print(str[1:4])

This will print out

ate

The first number before the colon represents the start index and the second number represents one more than the end index. (Thus, this string is formed with characters in index 1, index 2 and index 3 of the string str.)

We can quickly see that the second number minus the first number represents the length of the slice of the string.

Also, if we want to designate a slice that starts at the beginning of a string or ends at the end of the string, we can omit the respective index. Consider this example:

str = “Water”

pre = str[:2]

post = str[3:]

print(“First two letters are”, pre)

print(“Last two letters are”, post)
The output is:

First two letters are Wa

Last two letters are er

Finally, we are allowed to slice a string with negative indexes. If we use negative indexes, then we are counting from the end of the string. The last character in a string is stored in index -1, the one right before it in index -2, etc. The following example illustrates how this works:

str = “Water”

part = str[-4:-2]

pre = str[:-2]

post = str[-2:]

print(part+”\n”)

print(pre+”\n”)

print(post+”\n”)

The output here is

at

Wat
er

If we want to obtain the length of a string, just call the len function:
str = “Water”

print(len(str))

will output the following:

5
If Statement
The general syntax of the if statement in Python is as follows:

if expr1:

 stmt1-1

 stmt1-2

 …

 stmt1-a

elif expr2:

 stmt2-1

 stmt2-2

 …

 stmt2-b

...

else:

 stmtk-1

 stmtk-2

 …

 stmtk-n

All the clauses after the first one are optional. Here is how this is interpreted:

We check each expression (expr1, expr2, etc.) in order until we find the first one that is true. If one is found, we do the statements associated with that clause in order. Then we skip to the end of the whole statement. If none of the expressions are true, then we execute the statements in the else clause, if it exists. If the else clause exists, we are guaranteed to execute exactly one set of statements within the if-elif-else construct. If not, we may not execute any statements in the construct.

You can have as many elif clauses as you’d like.

The indentation dictates which statements are in which statements. This rule avoids a lot of ambiguity in other languages. The key here is to pay attention to your indenting and make sure that each clause in an if contains exactly the statements you want it to.
The expressions in this statement have to be Boolean expressions. Simple Boolean expressions are formed by comparing two quantities with the following operators: == , !=, <>, >=, >, <=, <. We can tie together two Boolean expressions to form a larger one with the Boolean operators or and and. Finally, not flips the value of a Boolean expression.
