Pointers in Fuctions

In this section, we shall consider parameter passing in functions in more detail. We shall study parameter passing by value as well as by reference. We have already introduced the concept of pointers and shall make use of the pointers in passing parameters by reference.

 Here is an example of parameter passing by value. The parameters x and y in the called function, correspond to the parameters k and j of the main function. While they get their values from the main function, and get changed in the called function, they are not able to change the values k and j in the main function.
Program 1.

#include <stdio.h>

int func1(int x, int y);

int main(void) {

 int mm, k = 10, j =6;

 mm = func1(k,j);

 printf("\nIn the main program”);

 printf("mm = %d k=%d j=%d\n",mm, k, j);

 return 0;

}

int func1(int x, int y) {

int ss;

ss = 2 * x + y;

x = x + 10;

y = y * 2;

 printf("In func1: x=%d y=%d\n", x,y);

 return ss;

}

output:

In func1: x=20 y=12

In the main program

mm = 26 k=10 j=6
Here is an example of parameter passing by reference. The parameter names in the main function and the called function are identical. The main program sends the address of the parameter balance, and the called function “leave” gets the contents of the pointed address, as the parameter value.

Program 2.

#include <stdio.h>

int leave(int *balance);

int main(void) {

 int balance =50;

 leave(&balance);

 printf("\nIn the main program”);

 printf("leave available= %d \n",balance);

 return 0;

}

void leave(int *balance){

int days;

printf("\nenter number of days ");

scanf(“%d”,days);

*balance = *balance – days;

printf("balance leave = %d \n",balance);

}
Sample output:
enter number of days 12

balance leave = 38
In the main program

leave available= 38
Note that if the function makes any change to the parameter *balance , it is reflected back in the main program. So in the main program the parameter changes its value from 50 to 38.

Here is another example of parameter passing by reference. The parameter names in the main function and the called function are different. However, the parameter types are same and they match. As in previous program, the main program sends the address of the parameter and the called function gets the contents of the pointer variable.

Program 3.

#include <stdio.h>

int leave(int *daysleft);

int main(void) {

 int balance =50;

 leave(&balance);

 printf("\nIn the main program”);
 printf("leave available= %d \n",balance);

 return 0;

}

void leave(int *daysleft){

 int days;

 printf("\nenter number of days ");

 scanf(“%d”,days);

 *daysleft = *daysleft – days;

 printf("days left = %d \n",daysleft);

}

Sample output:

enter number of days 12

days left = 38

In the main program

leave available= 38

In the above program, the parameter balance in main function corresponds to the parameter daysleft in the called function. So any changes in daysleft are directly passed on to the parameter balance in the main program.

Now we consider a program where one of the parameters is passed by value and the other one is passed by reference.

Program 4.

#include <stdio.h>

int f1(int *a, int b);

int f2(int a, int *b);

int main(void) {

 int c, a = 5, b = 2;

 c = f1(&a, b);

 printf("\nIn the main program”);
 printf("\na = %d b = %d c = %d\n",a,b,c);

 return 0;

}

int f1(int *x, int y) {

int val;

printf(“\nIn f1: x = %d y = %d”, *x,y);

*x = *x + 10;

y = y + 8;

val = *x – y;

printf(“\nIn f1: x = %d y = %d”, *x,y);

return val;

}

Output:
In f1: x = 5 y = 2

In f1: x = 15 y = 10

In the main program

a = 15 b = 2 c = 5

Note here that in the main program the value of b was 2. In the called function the corresponding parameter y gets the value 2 initially, but later gets changed to 10. However, in the main program its value does not change and is printed with the old value of 2. It is because it was passed by value.
The parameter a on the other hand was passed by reference, and the function has changed its value from 5 to 15. The value of the corresponding parameter a therefore also changes to 15 in the main program.

 In addition, the function in this program is no longer a void function, but returns an integer value.
We now study a more complicated program. As before, one of the parameters is being passed by reference, while the other one is being passed by value.
The important thing to note here is that the values of the parameters a,b,c and d in the main function could be totally different from the values of the parameters with identical names in the called function.
Program 5.

#include <stdio.h>

int f1(int *a, int b);

int main(void) {

 int a=5, b=2, c=7, d=9;

 c = f1(&d, a);

 printf("\nIn the main program”);

 printf("a=%d b=%d c=%d d=%d\n",a,b,c,d);

 return 0;

}

int f1(int *a, int b) {

 *a = b -8;

 b = b*2 - (*a);

 printf("In f1: a=%d b=%d\n", *a, b);

 return b - *a;

}

Output:

In f1: a=-3 b=13

In the main program

a=5 b=2 c=16 d=-3

Finally, we have here an extension of the previous program with two called functions. So try to work out the output of the program, and compare your results by running it on Olympus.

Program 6.

#include <stdio.h>

int f1(int *a, int b);

int f2(int a, int *b);

int main(void) {

 int a=5, b=2, c=7, d=9;

 c = f1(&d, a);

 printf("a=%d b=%d c=%d d=%d\n",a,b,c,d);

 a = f2(c-d, &a);

 printf("a=%d b=%d c=%d d=%d\n",a,b,c,d);

 b = f1(&c, 8);

 printf("a=%d b=%d c=%d d=%d\n",a,b,c,d);

 d = f2(b, &a);

 printf("a=%d b=%d c=%d d=%d\n",a,b,c,d);

 return 0;

}

int f1(int *a, int b) {

 *a = b -8;

 b = b*2 - (*a);

 printf("In f1: a=%d b=%d\n", *a, b);

 return b - *a;

}

int f2(int a, int *b) {

 a = *b+a;

 *b = 37 - *b;

 printf("In f2: a=%d b=%d\n", a,b);

}

