(Python) Chapter 3: Repetition

3.1 while loop

Motivation

Using our current set of tools, repeating a simple statement many times is tedious. The only item
we can currently repeat easily is printing the exact same message multiple times. For example,

print ("I love programming in Python!\n"*10)
will produce the output:

love programming in Python!
love programming in Python!
love programming in Python!
love programming in Python!
love programming in Python!
love programming in Python!
love programming in Python!
love programming in Python!
love programming in Python!
love programming in Python!

HHHHHHHHHH

Imagine that we wanted to number this list so that we printed:

love programming in Python!
love programming in Python!
love programming in Python!
love programming in Python!
love programming in Python!
love programming in Python!
love programming in Python!
love programming in Python!
love programming in Python!
0. I love programming in Python!

RO o ~Jo 0w
HHHHH H H H H

Now, the times operator (*) is no longer capable of allowing us to produce this output. Luckily,
Python provides us with multiple general tools for repetition where we’ll simply specify which
statements we want repeated and a way to determine how many times to repeat those statements.

Definition
The while loop is the most simple of the loops in Python. The syntax for the loop is as follows:

while <Boolean expression>:
stmtl
stmt2
stmtn
StmtA
The manner in which this gets executed is as follows:

1) Evaluate the Boolean expression.
2) Ifit’s true
a) Go ahead and execute stmt1 through stmtn, in order.
b) Go back to step 1.
3) If the Boolean expression is false, skip over the loop and continue to stmtA.

The key to the repetition is that if the Boolean expression is true, after we complete the statement,
we check the Boolean expression again instead of continuing. (In an if statement we would have
continued on.)

Flow Chart Representation
Here is a flow chart representing of the following code segment:

while <Boolean expression>:
stmtl
stmt2

stmt3

yes

Bnnlea.n Exp?

stmtl

N

stmt2

\% stmts

| love C Programming 10 Times Over

Now, with the while loop, we can more succinctly write code that prints out “I love programming
in Python!” ten times in a numbered list.

Our first realization is that we must utilize the loop construct so that it can “count.” Namely, on
any given running of the loop, we must have some way of “remembering” how many times we’ve
already printed out message. In order to do this we’ll use an integer that will act as a counting
variable. At any point in time, it’ll simply represent how many times we’ve printed our message.

Let’s take a look at a program that accomplishes our task:
def main():

count =1
NUM TIMES = 10

while count <= NUM TIMES:
print (count,". I love programming in Python!", sep ="")
count = count + 1

main ()

At the very beginning of the program, our variables look like this:

count 1 NUM_TIMES| 10

Thus, the while condition is true and the loop is entered. When we print, the value of count is 1,
so we get the first line of output:

1. T love programming in Python!
Next, we execute the line
count = count + 1

The left-hand side equals 2, thus, count will get set to two:

[]

count NUM_TIMES| 10

Since this a while loop and no more statements are indented, we go back to the top to check to see
if the Boolean condition is true. Since count is less than or equal to NUM_TIMES, we enter the
loop a second time, this time printing:

2. I love programming in Python!

Subsequently, we increment count to 3. Now, let's pick up execution when we get to the top of the
loop and count is equal to 10:

count | 10 | NUM_TIMES| 10

Now, we enter the loop since the Boolean condition is still true. Then we print:
10. I love programming in Python!

Next, we increment count to 11. When we go back to the top of the loop, the Boolean condition is
no longer true! Thus, we exit the loop after having printed out the desired output.

Alternatively, the following variation would work as well:
def main() :

count = 0
NUM_TIMES = 10

while count < NUM TIMES:
count = count + 1
print (count,". I love programming in Python!", sep ="")

main ()

It’s important to realize that problems can be solved in different ways, even one as simple as this
one. In our original solution, we used a 1-based counting system, starting our counting variable at
1. In the second example, we find if we change the order of statements in the loop, we must adjust
the initial value of our count AND change our Boolean condition.

All of this is evidence that when dealing with loops, attention to detail and consistency are very
important. It’s fine to start count at either 0 or 1, but the rest of the code must be consistent with
this starting value. (Note: in certain situations we’ll find the 0-based counting system to be more
natural and in others we’ll prefer the 1-based system.)

In general, after examining this program in detail it should be fairly clear that we can execute any
set of statements a set number of times using the same general construct:

count = 1
while count <= NUM TIMES:
Insert code to be repeated here.

count = count + 1

where NUM_TIMES is set to however many times the code block is to be repeated.

Using Loops to Print Out Different Patterns of Numbers

In the previous program, we used a loop variable to count from 1 to 10. Now, consider trying to
count all the positive even numbers up to 100. One way to solve this problem would be to use a
variable to count from 1 through 50, but then to multiply the variable by 2 when printing out the
numbers, so instead of printing 1, 2, 3, ..., 50, the values 2, 4, 6, ..., 100 would get printed:

count = 1

while count <= 50:
print (2*count)
count = count + 1

Another technique would be to have count equal to the values that are being printed and then just
print count. This means count must start at 2, and that we must add 2 to count each time around:

count = 2

while count <= 100:
print (count)
count = count + 2

Now, consider writing a code segment to print all the positive odd integer less than 100. We can
employ techniques virtually identical to the ones above. In both cases, we must print a number 1
lower than what we were printing. Here are both solutions:

count = 1

while count <= 50:
print (2*count-1)
count = count + 1

count =1

while count <= 100:
print (count)
count = count + 2

Finally consider writing a code segment to print the following sequence of numbers, one per line:
2,4,8,16,...,1024

In all of the previous examples, we would add a constant to the previous term to get the next term.
In this exam, we need to multiply the previous term by 2 to get the next. This leads to the following
solution:

count = 2

while count <= 1024:
print (count)
count = 2*count

Example: Add Up the Numbers from 1 to 100

Now let’s look at a slightly more difficult example that utilizes the counting variable inside of the
loop.

Consider adding the numbers 1, 2, 3, 4, ..., 100. If you were to do this task by hand, you’d start a
counter at 0, add in 1 to it to obtain 1, then add in 2 to it to obtain 3, then add in 3 to it to obtain 6,
then add in 4 to it to obtain 10, etc.

Let’s use the while loop to automate this task.
We will need a counting variable similar to count in the previous example. But, we will also need
a variable that keeps track of our running sum. Let’s call this variable sum. Any variable that keeps

a running tally going is known as an accumulator variable. The idea behind accumulator variables
is critical. It is used in many practical programs.

Let’s take a look at a program that solves this problem and trace through the first few steps
carefully:

def main() :
MAX_TERM = 100

sum = 0

count 1

while count <= MAX TERM:

sum = sum + count;
count = count + 1;
print ("The total is ",sum,".", sep="")

main ()

At the very beginning of the program, before the loop starts, memory looks like the following:

oot 1

FUrN]

Initially, the Boolean expression for the while loop is true, since count, which is 1, is less than or
equal to MAX_TERM. Now we encounter the critical line of code:

sum = sum + count;

Currently, sum is 0 and count is 1, so adding we get 1.This value is then stored back into the
variable sum:

connt 1

ST 1

Next, we increase count by 1, so now our picture looks like:

connt 2

We then check the Boolean expression again and see that it is true. At this point in time, we’ve
added in 1 to our total and are ready to add in 2. Now, we hit the line

sum = sum + count;

This time sum is 1 and count is 2, which add up to 3. This value gets stored in sum. Then, we
follow this line by adding one to count, which changes to 3:

connt 3

S 3

Now, we’ve added up 1 and 2 and are waiting to add in the next number, 3. The Boolean expression
is still true, so we then add sum and count to obtain 6 and then change sum to 6. This is followed
by adding one to count, making it 4:

connt 4

S &

At this point, hopefully the pattern can be ascertained. At the end of each loop interation, sum
represents the sum of all the numbers from 1 to count-1, and count is the next value to add into the
sum. The key idea behind an accumulator variable is that you must initialize it to 0, and then each
time you want to add something into it, you use a line with the following format:

<accum var> = <accum var> + <expr to add in>;

Whichever variable is the accumulator variable is the one that is set, using an assignment
statement. It’s set to the old value of the variable plus whatever value needs to be added in.

In our example, if right before the very last loop iteration, the state of the variables is as follows:

coant | 100

oo | 4250

Now, we go and check the Boolean expression and see that count is still less than or equal to
MAX_TIMES (both are 100), so we enter the loop one last time. We add sum and count to get
5050 and then update count to be 101:

coant | 101

5050

S

Now, when we check the Boolean expression, it’s false. We exit the loop and print sum.
To better understand this example, add the line:

print ("count =", count,"sum =", sum)
as the last line of the body of the loop and adjust MAX_TERM as necessary:

while count <= MAX TERM:

sum = sum + count;
count = count + 1;
print ("count =", count,"sum =", sum)

When programs aren’t working properly, inserting simple print statements like this one can help
uncover the problem. This process of finding mistakes is called debugging. Though inserting print
statements isn’t the ideal way to debug, it’s the most simple way and recommended for beginners.
More will be mentioned about debugging later. In this particular example, the print is to aid
understanding, so that we can see what each variable is equal to at the end of each loop iteration.

Now, consider editing this program so it calculated the sum of the numbers 1, 3, 5, ..., 99. We just
change MAX_TERM to 99 and change our loop as follows:

while count <= MAX TERM:
sum = sum + count
count = count + 2

The key difference here is that count no longer represents how many times the loop has run. Rather,
count simply represents the next number to add.

Yet another approach edits the loop as follows:

while 2*count-1 <= MAX TERM:
sum = sum + (2*count - 1)
count = count + 1

In this approach, count keeps track of how many times the loop has run, but when we need to
access the current term, we use an expression in terms of count (2*count — 1) that equals it.

As previously mentioned, programming problems can be solved in many different ways. It’s
important to get comfortable manipulating counting variables in loops as shown in these examples
so that a programmer can solve different types of problems.

Sentinel Controlled Loop

Each of the loops we’ve seen so far is a counting loop. Namely, a variable is used to keep track of
how many times the loop has run, and the loop is terminated once it has run a particular number
of times.

Now consider a slightly different problem: adding up a list on numbers until O is entered. In this
problem, 0 is considered the sentinel value, since it represents the trigger for ending the loop. (The
loop exits not because it’s run a particular number of times, but because some value, known as the
sentinel value, has been triggered.)

Just like the previous problem, we’ll require the use of an accumulator variable, sum. We will also
need to use a second variable to read in each number. Let’s call this number. Now, we must read
in each value into the variable number until this variable equals 0 (which means our loop runs so
long as number doesn’t equal 0.) Let’s take a look at the program:

def main () :

sum = 0
number = int (input ("Enter your list, ending with 0.\n"))
while number != 0:
sum = sum + number
number = int (input(""))
print ("The sum of your numbers is ",sum,".", sep="")
main ()

Let’s trace through the example where the user enters 7, 5, 14, and 0. After the very first input, the
state of the variables is as follows:

marther 7

]

ST

Since number isn’t 0, the loop is entered. Adding the current values of sum and number yields 7,
and we set sum to 7. Then, we read in the next number, 5:

mwher | 3

ST 7

Once again, number isn’t 0, so we enter the loop again. Adding sum and number yields 12, and
we set sum to 12. Then we read in 14 to number:

munber 14

12

ST

Since number isn’t 0, the loop is entered again and sum and number are added to obtain 26, which
is stored in sum and the next value read into number is O:

mwmther | O

28

ST

Now, when we check the Boolean condition, it is evaluated as false and the loop is exited. Then,
the value of sum, 26, is printed.

Guessing Game Example

A common game many young kids play is guessing a number from 1 to 100. After each guess, the
person who chose the secret number tells the guesser whether their guess was too low or too high.
The game continues until the guesser gets the number. The natural goal of the game is to minimize
the number of guesses to get the number.

In this example, the “computer” will play the role of the person generating the secret number and
user will be the guesser. We’ll simply output the number of guesses it took to get the number.

Just like the previous example, since we don’t know how many times the loop will run, we will
check for a trigger condition to exit the loop. In particular, so long as the user’s guess doesn’t equal
the secret number, our loop must continue.

A variable will be needed to store both the secret number and the user’s guess. The rand function
discussed in the previous chapter will be used to help generate the random number.

The basic strategy is as follows:

1) Generate a secret number
2) Set the number of guesses the user has made
3) Loop until the user’s guess equals the secret number
a) Prompt the user for a guess
b) Read in a guess
c) Output an appropriate message
d) Update the guess counter
4) Output the number of moves the user took to guess the secret number.

Here’s the program:

import random
def main() :
MAX VAL = 100

num_guesses = 0
guess = -1

secret = 1 + random,randint (1, MAX VAL)
while guess != secret:
guess = int (input ("Enter your guess. (1l to "+ str (MAX VAL)+")\n"))

if guess == secret:

print ("You win!")
elif guess < secret:

print ("Your guess is too low. Try again!")
else:

print ("Your guess is too high. Try again!")

num guesses = num_guesses + 1;
print ("You won with",num guesses, "guesses.")

main ()

This is the first example with an if statement inside of a loop. Since an if statement is a regular
statement, it’s perfectly fine to place in a loop. In this particular example, we are guaranteed to
initially enter the loop because guess is set to -1, which is guaranteed not to equal the secret
number, which is guaranteed to be in between 1 and 100.

When we read in the first guess, we need to decide which message to output the user. There are
three possibilities, so we use a nested if to output the appropriate message. Finally, we use
num_guesses as a counting variable through the loop. When the user enters the correct guess, “You
win!” will be printed, the total number of guesses will be updated and when the Boolean expression
is checked again, the loop will exit and the correct number of total guesses will be printed.

Example: Guessing Game Rewritten using a flag-controlled loop

Yet another technique often used to control a loop is a flag controlled loop. Simply put, a flag is a
variable that keeps track of whether or not to enter a loop. A common method for using a flag is
to set it to O while the task is not done, to indicate that the loop should continue and then set it to
1 when the task is done. This general technique can be used in many settings.

Here is the guessing game rewritten to use a flag to control the loop. A couple other changes have
been made to streamline this version:

import random
def main () :

MAX VAL = 100

num guesses = 0
guess = -1
done = False

secret = 1 + random.randint (1, MAX VAL)
while not done:
guess = int (input ("Enter your guess.(l to "+ str (MAX VAL)+")\n"))
if guess == secret:
done = True
elif guess < secret:
print ("Your guess is too low. Try again!")
else:
print ("Your guess is too high. Try again!")
num_guesses = num _guesses + 1;

print ("You won with",num guesses, "guesses.")

main ()

The key here is when we realize that the correct guess was made, we must set our flag done to
True, to indicate that the loop is now done. This technique of using a Boolean variable to control
a loop running is very common.

