4.1 Strings

Use of String Variables

We have already seen strings, but since we've been introduced to loops and index variables, we
can learn a bit more about manipulating strings. The most natural way to initialize a string variable
is through the input statement:

name = input ("Please enter your name.\n")

In this example, whatever the user enters will be stored in name.

Once we have a string stored in a variable, there are a number of ways to access parts of the string,
check the string for letters or manipulate the string.

Checking to see if a letter is in a string

Python allows for a very simple method to check to see if an letter or any other character for that
matter is in the string, using the in operator:

name = input ("Please enter your name.\n")

if 't' in name:
print ("You have an t in your name.")

This operation works as follows:

<character> in <string>

This expression is a Boolean expression that will evaluate to True if the specified character is in
the string, and false otherwise. Not only will this work to check for a character, but it will also
work to check for a substring, or a consecutive sequence of characters in a larger string. For

example, the expression 'put' in 'computer' evaluates to true since the fourth, fifth and
sixth letters of ' computer' are 'put'.

Indexing into a String — Non-negative Indexes

A common operation with a string is to access one character in a string. This can be done with
square brackets. If name is a string, then name [0] represents the first character in the string,
name [1] represents the second character in the string name, and so on. In addition, to find the
length of a string, we use the 1en function, which will return the total number of characters in the
string. Thus, a method to determine if a character is in a string from first principles is as follows:

name = input ("Please enter your name.\n")

flag
for 1 in range (len(name)) :

False

if name[i] == 't':
flag = True

if flag:
print ("You have an t in your name.")

We can easily use indexing to count the number of times a particular character appears in a string.
Here is the previous segment of code edited to print out the number of times ‘t” appears in the
string entered by the user:

name = input ("Please enter your name.\n")
count = 0
for i in range (len(name)) :
if name[i] == 't':

count = count + 1
print ("You have an t in your name", count, "times.")
Indexing into a String — Negative Indexes
Python also allows negative indexes into a string, which is a feature many other languages do not

support. If you give a negative integer as an index to a string, Python will start counting from the
end of the string. For example, here are the corresponding indexes for the string hello:

index -5 -4 -3 -2 -1
String Lh’ ‘e’ (.17 ‘17 GO’

Though you are not required to use negative indexes, they can come in handy sometimes, if you
want to look for a character a specified number of positions from the end of a string. Without

negative indexing, you would have to do the math on your own, using the len function and
subtracting.

Here is a simple example where negative indexing simplifies a program. In the following program
we will ask the user to enter a string with only uppercase letters and we will determine whether or
not the string is a palindrome. A palindrome is a string that reads the same forwards and backwards.

The key strategy here will be to maintain two indexes: one from the front, counting from 0 and
one from the back counting backwards from -1. We want to check to see if corresponding
characters from the front and back match. If we find a mismatch, we immediately know our string
is not a palindrome. We can stop halfway through the string. Remember we must use integer
division to determine the point since the range function only takes in integers.

def main () :

word = input ("Please enter a string, uppercase letters only.\n")
back = -1
isPal = True

for i in range(len(word)//2):

if word[i] != word[back]:
isPal = False
break

back = back -1

if isPal:

print (word,"is a palindrome.")
else:

print (word,"is not a palindrome.")

main ()
Slicing a String

Slicing refers to obtaining a substring of a given string. An explicit way to denote a substring is to
give both its starting index and ending index. In Python, just as we saw with the range function,
the ending value is not included in the set of values described in a slice. Thus, the starting index is
inclusive, while the ending index is exclusive. Given that the string word was set to “hello”, the
slice word[2:4] would be “lI” and the slice word[1:2] would simply be “e”.

We can slice strings with negative indexes as well. This IDLE transcript should clarify the rules
for slicing where both indexes are specified:

>>> word = "PYTHONISCOOL"
>>> print (word[2:7])
THONI

>>> print (word[6:6])

>>> print (word[4:2])

>>> print (word[5:11])
NISCOO

>>> print (word[8:12])
COOL

>>>

>>> print (word[-7:-2])
NISCO

>>> print (word[-9:8])
HONIS

>>> print (word[-3:-7])

>>>

Notice if you attempt to slice a string where the starting index refers to a position that occurs at or
after the ending index, the slice is the empty string, containing no characters.

A string can also be sliced using only one index. If only one index is given, Python must know if
it’s the start or end of the slice. It assumes that the omitted index must refer to the beginning or
end of the string, accordingly. These examples should clarify slicing using only one index:

>>> print (word[8:])
COOL

>>> print (word[-6:])
ISCOOL

>>> print (word[:6])
PYTHON

>>> print (word[:-4])
PYTHONIS

>>>

String Concatenation

We have briefly seen string concatenation before. It is accomplished via the plus sign (+). If two
strings are “added”, the result is sticking the first string followed by the second string. This is
helpful in printing and especially in the input statement, which only takes a single string as a
parameter. Here is a short example that utilizes string concatenation:

first = input ("Please enter your first name.\n")
last = input ("Please enter your last name.\n")
full = first+" "+last

print (full)

In order for python to recognize that you want string concatenation, BOTH operands must be
strings. For example, if you try to do “hello” + 7, you will get a syntax error since strings and
integers are not allowed to be added or concatenated.

Pig Latin Example

Pig Latin is a common children’s code used to (sort of) hide the meaning of what is being said.
There are many variations, but the variation implemented here will use the following rules?:

1) For words that start with a consonant and have a vowel, take the first consonant cluster, cut and
paste it to the end of the word and add ““ay” after it.

2) For words that start with a vowel, add “way” after it.

3) For words with no vowels, keep them as is, since they are probably difficult enough to
understand!?

Our first task will be to find the index of the first vowel, if it exists. We must be careful to not
commit an index out of bounds error, where we attempt to index the string at an invalid index. We
do this by first checking to see if the index is within the appropriate bounds before indexing the
string with it. Short-circuiting allows us to do this in one check. Namely, if the first part of a
Boolean expression with an and is False, then Python will NOT evaluate the second portion of the
expression at all.

Once we identify this index, we split our work into the three cases outlined above, using slicing
and string concatenation appropriately.
Here is the program in its entirety:

I The first two rules are a simplification of what is posted on Wikipedia.
2 This rule is my own incarnation so that our program distinguishes between words with and without vowels.

def main () :

VOWELS = "AEIOU"
ans = "yes"

Allow multiple cases.
while ans == "yes":

mystr = input ("Enter a word,
Pig
index = 0

and

while index < len (mystr)

index = index+1
Just add "way" to words that
if index == 0:

print (mystr+"WAY")

Move first consonant cluster
elif index < len(mystr):

print (mystr[index:]+mystr]|
If there are no vowels, just
else:

print (mystr)

ans = input ("Would you like to

main ()

(not mystr[index]

all uppercase letters.\n")

Latin Rule - Find first vowel

in VOWELS) :

start with a vowel.

to end and add "ay"

cindex]+"AY")

keep it as 1is!!!

translate another word?\n")

The outer loop allows the user to test multiple words. The inner loop finds the first index storing
a vowel. Note that we could have created a string with consonants to see if mystr[index] was in it,
but since it was shorter to type out the vowels, this route was chosen and the not operator was used.
In each of the three cases, the appropriate slicing and concatenating is done to produce the output
string. Notice that in the second case, the slicing works out nicely, since we are able to use the
same index in specifying both slices to “reorganize” the word, so to speak.

