(Python) Chapter 2: If Statement, Random Class, Introduction to Defining Functions

2.1 Conditional Execution

Basic ldea

One limitation to programs created only using the statements presented in chapter 1 is that the
same exact statements in a program will run every time the program is interpreted. The problem
with this is that in real life, when we carry out directions, we don't always execute the same
steps. Consider the situation of determining whether or not you will go out with a friend. If your
homework is done, you would like to go out with your friend. But, if your homework isn't done,
you won't go out with your friend. Similarly, in programming, it makes sense to allow
conditional execution. Namely, if some condition is true, then execute some set of statements.

Basic if Statement
In Python, the syntax of the most basic if statement is as follows:

if <Boolean Expression>:
stmtl
stmt2

stmtn
stmtA

A Boolean expression is one that always evaluates to true or false. Details about how to create a
Boolean expression will be covered shortly. If this expression evaluates to true, then the
statements stmtl through stmtn are executed in order, followed by stmtA. However, if this
expression evaluates to false, then all of these statements are skipped and stmtA is then executed.
Note: It's not required for there to be a statement such as stmtA after the completion of the if
statement.

The interpreter determines which statements are inside of the if clause based on indentation. For
a statement to be consider inside of the if, it must be indented to the right from the if statement
itself. All subsequent statements inside of the if must be indented to the same level.

Sales Tax Example Revisited

When buying most items, sales tax is added to the price. However, for some items, such as basic
food, no sales tax is added. In this example we'll ask the user to enter the item price. Then we'll
ask them if sales tax is to be assessed. If it is, then we'll ask the for percentage of sales tax and
calculate the final price.

Arup Guha
6/26/2012
Sales Tax Program Revisited - conditionally charges sales tax.

def main () :
Get the user input.
item price = float (input ("Please enter the price of your item.\n"))

is_taxed = input ("Is your item taxed(yes,no)?\n")

If the item is taxed, ask the sales tax percentage and add tax.

if is_taxed == "yes":
tax rate = float (input ("What is the sales tax percentage?\n"))
item price = item price + item price*tax rate/100

Calculate the total price and round.
print ("Your total cost is $",item price,".",sep="")

Start the program.
main ()

This program shows our first example of a Boolean expression. The Boolean expression in this
program is:

is taxed == "yes"

This is how we check to see if the variable is_taxed is equal to the string "yes". If it is, then this
Boolean expression evaluates to true. Otherwise, it evaluates to false.

Thus, if the user enters "yes", then they will be prompted to enter the percentage of sales tax.
Then the variable item_price will be reassigned to include sales tax. If the user enters anything
but "yes", then these two statements are skipped. Afterwards, the value of the variable item_price
is printed.

Let's take a look of running this program two separate times:

>>>

Please enter the price of your item.
10.99

Is your item taxed(yes,no)?

no

Your total cost is $10.99.

After the first line, the picture in memory is as follows:

item price|10.99

After the second line, the picture in memory is:

item_price | 10.99 is_taxed | "no

At this point, we approach the if statement. We compare the value of the variable is_taxed to the
string literal "yes", and see that they are not equal. Note that when we type in strings we don't
type in the double quotes, but when we denote string literals (string values instead of string
variables) inside of our programs, we denote them with either matching double quotes or
matching single quotes, as was previously discussed in the section about the print statement.

Since this if statement evaluates to false, the following statements that are indented get skipped.
The next statement that runs is:

print ("Your total cost is $",item price,".",sep="")

Since the value of the variable item_price is 10.99 at this point in time, this is what gets printed
for the total cost.

Now, consider the following execution of the program:

>>>

Please enter the price of your item.
10.99

Is your item taxed(yes,no)?

yes

What is the sales tax percentage?
6.5

Your total cost is $11.70435.

The picture for this execution after the first two lines of code is:

item_price | 10.99 is_taxed | Y&S

At this point, when we evaluate the Boolean expression in the if statement, we find that it's true
since the variable is_taxed stores the string "yes". Then we go ahead and execute the following
statement:

tax rate = float (input ("What is the sales tax percentage?\n"))

After this statement is executed, our picture of memory is as follows:

item_price | 10.99 is_taxed | ves" tax rate | 6.5

Then we execute the following statement in the if:
item price = item price + item price*tax rate/100
item_price currently evaluates to 10.99 while item_price*tax_rate/100 is equals to .71435.

Adding these, we evaluate the right-hand side of the assignment statement to equal 11.70435,
thus our picture in memory AFTER this statement is:

item_price [10.70435 |is_taxed | "ves' tax_rate | 6.5

One of the basic building blocks of a Boolean expression is a relational operator. Here are the six
relational operators and their meanings:

Relational Operator Meaning

== Equal to

= Not equal to

> Greater than

>= Greater than or equal to
< Less than

<= Less than or equal to

Thus, in this Boolean expression we are checking to see IF the variable is_taxed has the value
"yes". Notice that checking for equality uses two equal signs instead of one. This is because one

equal sign already has a well-defined meaning: the assignment operator. Assigning a variable
changes its value while checking for equality between two expressions doesn't change the value
of any of the variables involved.

Formatting Decimal Output to a Specific Number of Places

In our previous examples, when we printed out real numbers, they printed out to many decimal
places. Python uses a method similar to the language C to format real numbers to a fixed number
of decimals. The syntax is strange and uses that percent sign (%), which we use for mod, in a
different way. The expression that evaluates to a variable rounded to two decimal places is:

"$.2f"%var

where var is the variable to round. Here is an application of this syntax to displaying the item
price rounded:

print ("Your total cost is $", "%.2f"%item price, ".",sep="")
If you want a different number of decimal places displayed, just change the 2 in the format

string. (Note: The f in that set of double quotes indicates float and the .2 indicates to print out
two digits after the decimal.)

2.2 if Statement with else Clause

In the previous example, if the item was taxed, we wanted to carry out an action, but if it wasn't
we simply wanted to skip that action. In many cases however, if some condition is true, we want
to execute one set of statements, but if it's false, we want to execute a separate set of statements.

strrtll
yes B &
stmtl?— stmina strmtlh-stmnb
NV
stmt

The basic syntax for this type of situation is as follows:

if <Boolean Expression>:
stmtla
stmt2a

stmtna
else:
stmtlb
stmt2b
stmtmb
StmtA
The basic flow of control here is that we first evaluate the Boolean expression. If it's true, we
complete statements stmtla through stmtna and then continue to stmtA. Alternatively, if the

Boolean expression is false, skip stmtla through stmtna, but do execute statements stmtlb
through stmtmb, and then continue to stmtA.

Let's take a look at a couple examples that utilize this component of the if statement.

Work Example

Consider a job with flexible hours where you must spend a certain number of hours a week.
During the week if you've exceeded that number, let's say you have to take the excess hours as
vacation in future weeks. Alternatively, if you haven't exceeded that number, you'll have to work
the remainder of the hours. In this program, we will ask the user to enter the number of hours
they are supposed to work a week and how many she's worked thus far. Then, our program will
print the appropriate output, asking the user to either work more hours, or take vacation.

Arup Guha

7/2/2012

Example of a Basic if-else statment - determines if you need to
work more or if you need to take vacation time.

def main() :

work week = int (input ("How many hours are you supposed to work?\n"))
this week int (input ("How many hours have you worked this week?\n"))

You've worked enough!
if this week > work week:

print ("You must take",this week-work week, "hours of vacation.")

Need to put in some more hours!!!
else:

print ("You must still work",work week-this week, "hours this week.")

main ()

Now, in the case that the Boolean expression is true, we print out the vacation hours.
Alternatively, we print out the hours left to work. Incidentally, what happens if you've worked
the exact correct number of hours?

Quadratic Equation Example

A common formula taught in Algebra I is the quadratic formula. However, sometimes this
formula leads to "impossible™ roots, which we later learn are "complex.” In this program, given
the coefficients of a quadratic equation from the user, if the roots are real, we will print them out.
If they are not, we'll print out an error message.

. . —-b+Vb2-4 . .
The quadratic formula is as follows: x = ‘Tac This equation has to real roots so long as

what is under the square root sign is non-negative. This leads to the following program:

Arup Guha
7/2/2012
Quadratic Equation Solver

def main () :
Get user input.
a = float (input ("Please enter a from your quadratic equation.\n"))
b = float (input ("Please enter b from your quadratic equation.\n"))
c = float (input ("Please enter c from your quadratic equation.\n"))

Calculate the discriminant.
disc = b**2 - 4*a*c

Deal with real roots.
if disc >= 0:

xl = (-b + disc**.5)/(2*a)
X2 (-b - disc**.5)/(2*a)

print ("Your roots are ",x1," and ",x2,".", sep="")

Error message for complex roots.
else:

print ("Sorry, your roots are complex.")

main ()

elif clause

In the work week example, if the user worked the exact correct number of hours, our program
would print the following message:

You must still work O hours this week.

While this is technically accurate, the tone of this message is a bit misleading. It would be nice if
we had a third "option™ to print out in this special equal case.

Luckily, python gives us the facility to check for 3 or even more different options and choose at
most one of them. This is through the elif branch of the if statement. elif is short for "else if."
The general syntax of an if statement with one of these branches is as follows:

if <Boolean Expression 1>:
stmtla

stmtna
elif <Boolean Expression 2>:

stmtlb

stmtmb
else:

stmtlc

stmtpc
stmtA
This works as follows: We first check the first Boolean expression. If it's true, we do stmtla
through stmtna, and then skip to stmtA. Alternatively, if this is false, we then check the second
Boolean expression. If this one's true, then we execute stmtlb thorugh stmtmb and then skip to

stmtA. Finally, if the second Boolean expression is also false, we go to the else clause and
execute statemnts stmtlc through stmtpc and then move onto stmtA.

Thus, we can edit the if statement in our work program as follows:

You've worked enough!
if this week > work week:
print ("You must take",this week-work week, "hours of vacation.")

Correct hours worked
elif this week == work week:
print ("Perfect, your done for work for the week!")

Need to put in some more hours!!!

else:
print ("You must still work",work week-this week, "hours this week.")

Grade Example

A very common example given to illustrate an if statement with several clauses is a program that
prints out the grade a student should get based on the percentage they earned in a class. In this
example, we'll use the typical A (90-100), B (80-89), C(70-79), D(60-69) and F (0-59)
breakdown.

def main{() :
perc = int (input ("What is your percentage in class?\n"))

if perc >= 90:
print ("You got an A!")
elif perc >= 80:
print ("You got a B!")
elif perc >= 70:
print ("You got a C.")
elif perc >= 60:
print ("You got a D.")
else:
print ("Sorry, you got a F.")

main ()

Notice that we only need to check one condition for each letter grade since the order in which
they are checked. All grades 90 or higher are "caught” by the first clause, so if the second clause
(elif perc >= 80) is ever evaluated, then we know that perc must be less than 90. Thus, if this
boolean expession is true, it follows that perc is in greater than or equal to 80 AND less than 90.
Continuing this logic, each of the first four clauses properly maps to their corresponding letter
ranges. The only way the else clause executes is if perc is less than 60.

To note that the order here is important, consider what would happen with the following if
statement:

if perc >= 70:
print ("You got an C.")
elif perc >= 90:
print ("You got a A!")
elif perc >= 80:
print ("You got a B!")
elif perc >= 60:
print ("You got a D.")
else:
print ("Sorry, you got a F.")

What would this code segment print out if perc equals 95 right before it? Or 83? Will this code
segment ever print out "A" or "B"?

