
Today’s Goals 

1. Show exactly how lists work in functions as parameters and how 

they get returned from functions. 

2. Continue to convince you that functions are really important to 

good code design. 

3. Utilize lists and functions to do a full on implementation of 

Blackjack, where we accurately mimic having a standard deck of 

52 cards. 

4. Show significant planning before starting the implementation 

 

Planning Phase 

Cards will be numbers 0 to 51. 

0 – 12 Clubs (2-10 will be 2-10, J=11, Q=12, 0 = K, 1 = A) 

13 – 25 Diamonds 

26 – 38 Hearts 

39 – 51 Spades 

This system is such that cardnumber//13 will give us the suit (0 = Clubs, 

1 = Diamonds, 2 = Hearts, 3 = Spades) 

Within a suit, card%13 tells me its kind, as indicated by the Clubs above. 

 

Random Shuffle 

1000 times, I will pick two random cards and swap them in the deck. 

 

Mimic A Real Shuffle 



Split the deck in two lists. 

We will alternate removing cards from the two lists, much like 

intertwining cards. We will choose 1 or 2 cards to take from each list 

before flipping to the other. 

 

Function to Deal a Card 

Remove the top card and return it. 

 

Players Hands 

Each hand will be a list as well. We will declare these in main. 

Over the course of the game, we will call the deal function which will 

return a card, which we will then add to a player’s hand. 

 

Scoring Function for one card 

Similar to what we wrote before, and for aces, we will tentatively 

return 11, but in another scoring function, we will allow aces to change 

to 1, only if necessary. 

 

Hand Scoring Function 

Initially add up the total points of all cards, but also, calculate the 

number of aces. 

If the score > 21 and the ace count is > 0, we can convert each ace from 

11 to 1. So while our score is above 21 and our ace count is > 0, we 

subtract 1 from ace count and subtract 10 from score. 



Picture of Rifle Shuffle 

 

Picture of what the Deal Card will look like 

 


