Function Analogy

Each function is like a person doing a specialized task in a company.

Whenever someone tells someone else to do a task though, rather than continuing their work, they
patiently wait until the person they asked to complete a task does so...

A function does nothing unless you CALL IT (employees are lazy inherently =))
When we call the function, we may have to give it some information so that it can do its job...
For example, the copy guy needs to know:

a) What to copy (string)
b) How many copies to make (int)
c) Mode (single/double sided) (Boolean)

After they finish, (a) you will find out that they are done and (b) they may give you some information...
Copy guy returns to you the bill...

Picture for copy example:

main makeCopies
makeCopies text ’alphabet]
numcopies
i
endingStr — ']
i ese——
K

And the second example:

main makeCopies

makeCopies text ! beach |
, ’ :
numcopies
mystr | | will not go to beach \ P 24
' ~ endingStr
"\n" ’
L)
p—
o

ONE BIG BENEFIT OF FUNCTIONS: CODE REUSE

ANOTHER: CODE ORGANIZATION ALLOWS FOR THE PROGRAMMER TO KEEP TRACK OF LESS AT ANY
GIVEN TIME.

Key issues people have trouble understanding:

Difference between actual and formal parameters.

Building a proper mental model of what happens in the computer when a function is called.

When writing a function, we typically assume that the formal parameters (the variables listed on the
function definition line), already have values.

Income < 10000 $0 taxes
10000 < income < 20000, 10%
Income > 20000, you pay none of the first $10k, 10% on the next 10k, 20% on the rest.
40000-> 0 on the first 10000
1000 on the next 10000 (10% of 10000)

4000 on the last 20000 (20% of 20000)

5000 tax in total

When we test the function via unit testing, we must CALL the function, and we should call it multiple
times with different test cases, which test out different options of the function. When we call the
function, we use the name of the function we do NOT say “def”, and we provide actual parameters.
These actual parameters do NOT need to be variables. Rather, they can be any expressions of the same
type as the corresponding formal parameter.

So each actual parameter is evaluated and then those values are copied into the boxes for the
corresponding formal parameters.

