Calendar Example

First — just did a main function that prints one month.

Next — Changed main to be called oneMonth, added a new main which looped through the months and
called oneMonth each time. Every time oneMonth is called, it did the same thing.

Third — It was strange that oneMonth always asked for the number of days. We should do that in main.
But then, we need to “transfer” that information to the function. We do that via a parameter, adding
the name of the variable in the parentheses when defining the function.

main oneMonth
months| 3 &
S days | 21
days 17 -
] day 1
month | o

Fourth — To illustrate that each main and oneMonth has their own variables, we called the variables
different names (days and numDays) and showed what happens when we call the function with the
wrong name. In the video we showed how the VALUE of the actual parameter (in the function call), gets
copied into the box for the formal parameter (in the function).

main R oneMonth

numMonths | 3 ’
days

3

numDays ’ 21
Picture of calendarfuncd - the value of the actual

parameter, numDays, gets copied into the box for the
formal parameter, days.

Fifth — Showed what happens when we ignore the user input and always pass in 21 for # of days.

main oneMonth
numMonths | 3 ‘

days 21

numDays 70

Picture for version 5 - when | called the function, | told it |
wanted 21 days, not numDays days...so the calendar printed with
21 days no matter what | entered!!!

Sixth — Showed that we have the power to pass in different values for the # of days...we created a
pattern where each subsequent month had 7 more days than the previous one.

fkaliy oneMonth
numMonths | g days | 14
—

numDays | 21

|

oneMonth(numDays+(months-1)*7)

months | 1 Computer calculates
— nD+(m-1)*7is 14

Later when months in oneMonth
mainis 2 E
days
This time the value of ¥ , 21

the expression is 21...

Functions that return something...like math functions

Functions from math return things think of f(x) = x2, so if the input is x = 5, the output is 25.
In programming functions are more flexible...
They don’t have to take anything in and don’t have to return anything. (main function)

They don’t have to take anything in, but can still return something. (first pairOfDice function)

They don’t have to return something (like the oneMonth function).

Or, they can do both...

main pairOfDice

T numSides 6

pairOfDice(6)

Here we use different sided dice:

main pairOfDice
31
scorel |31 | — numSides| 20
*7 returning —_
sides 7 function disappears as it
returns

pairOfDice function —it’s task is to return the sum of a pair of dice being rolled..
A function that returns something should NOT be called on a line by itself!!!

It needs to be called in a larger expression, so either what the function returns gets printed out, or it
gets stored in a variable, or it gets used in a larger calculation...

Game to write with functions

User chooses # of multiplication problems
Max input for each problem...

WE play the game...see how many the user gets correct

42

main isCorrect
numMult | 5 wimnd .
/
maxVal / num2 | o
10 False
userAnswer
ect
corr 0 /
i 0 Function gets erased
after return False.
vall g
|
val2 6
ans | 45
main isCorrect
numMult | 5 numi 3
maxVal True / num2
10 A 7
A
userAnswer 21
correct
T 4 |
i 1 After the function
returns True, we run the
vall o if code and add 1 to
correct! (Function
memory isn't there
val2 7 anumnra |
ans | 54

