
Chapter 7 Notes 

 

Block-Cipher Modes 

 

1) Electronic Code Book(ECB): This is the typical manner in which block cipher are 

executed. Simply grab n bits of the plaintext at a time, where n is the block size, and then 

encrypt them using the algorithm, and output the corresponding ciphertext. Repeat for 

each subsequent block. 

 

2) Cipher Block Chaining(CBC) mode: 

 

     C0 = IV (initialization vector) 

     i = 1 

     while (!done)  

        Ci = eK(Ci-1  Mi) 

 

     Mi and Ci stand for the ith 64 bit block of plain and cipher text respectively. 

 

3) Output Feedback Mode(OFB): 

 

     This is a stream cipher, which means that we obtain the ciphertext by XORing 

     the plaintext with a keystream. The keystream is generated with the key and the 

     block cipher system being used. 

 

     K0 = IV 

     i = 1 

     while (!done) { 

         Ki = eK(Ki-1) 

         Ci = Mi  Ki  

     } 

 

4) Cipher Feedback Mode(CFB): 

 

     This is also a stream cipher, except that the keystream is generated by encrypting 

     the ciphertext instead of the plaintext. 

 

     C0 = IV 

     i = 1 

     while (!done) { 

         Ki = eK(Ci-1) 

         Ci = Mi  Ki  

     } 

 



5) Counter Mode (CTR) 

 

    Here, the counter array stores known, prechosen values, so that each block could 

    be encrypted in parallel. It could just store, 1, 2, 3, etc. Or, the initial counter value 

    could be provided and then future counter values could be based on it, but if this 

    were the case, then the counter values would have to be determined sequentially. 

 

    i = 1 

    while (!done) { 

        Ki = eK(counter[i]) 

        Ci = Mi  Ki  

    } 

 

Data Encryption Standard(DES) 

 

Here is the basic algorithm used for DES: 

 

To encrypt a plaintext x of 64 bits and a secret key K of 56 bits do the following: 

 

1) Compute x0 = IP(x), a fixed permutation of the bits in x. IP is specified in the text. 

 

2) Let xi = LiRi, for 0  i  16, where Li is the 32 leftmost bits of xi and Ri is the 32 

rightmost bits of xi. Make the following sequence of computations: 

 

     for (i=1 to 16) { 

         Li = Ri-1 

         Ri = Li-1  f(Ri-1, Ki) 

     } 

 

Essentially, each loop iteration is known as a Feistel round. (Feistel is the creator of 

DES.) DEs comprises 16 of these rounds. Each round encrypts ½ of the bits from the 

pervious round. The function f and the key for the ith round Ki will be discussed in detail 

later in these notes. 

 

3) y = IP-1(R16L16), this means applying the inverse permutation applied in step 1 to the 

string R16L16. (Notice the “reverse” order of the two blocks L16 and R16.) 

 

In essence, you would repeat this process for every block of 64 bits that needs to be 

encrypted. 

 

Now, we need to mention the details of step 2. First the function f: 

 

The first input to f, Ri-1 is 32 bits, while the second input Ki is 48 bits from the 56 bits of 

the key K. 

 



1) Expand the 32 bits of Ri-1 to 48 bits using the matrix E, which is also shown in the 

book. This matrix delineates an ordering of the bits of Ri-1 where 16 of the bits are 

repeated. Let this computed value be E(Ri-1). 

 

2) Compute E(Ri-1)  Ki. Let this computation produce B = B1B2...B8, where each Bj, 1  

j  8 is 6 bits of B. 

 

3) This is probably the most strange part of the algorithm. In this step the 48 bits of B 

need to be reduced to 32 bits. This is done via 8 S-boxes, S1, S2, ... S8. One way to think 

about these S-boxes is the following. Each is a lookup table with 64 rows, 1 for each 

possible set of 6 binary bits. The right-hand side of the table has entries from 0 to 15, 

which correspond to 4 binary bits. In essence an S-box specifies a function from 6 binary 

bits to 4 binary bits. Compute Cj = Sj(Bj) for , 1  j  8. Let C = C1C2...C8. 

 

4) f(Ri-1, Ki) = P(C), where P is a fixed permutation of the bits in C. (P is included in the 

text.) 

 

 

How to use the S-boxes in the text 

 

Let the 6 input bits be b1b2b3b4b5b6. Let R = b1b6, a binary value that ranges from 0 to 3, 

and C = b2b3b4b5, a binary value ranging from 0 to 15. R will tell you the row to look on 

in the S-box. (Top row is 0, bottom is 3.) S will tell you the column to look on in the S-

box. Each value in an S-box is from 0 to 15. This corresponds to 4 binary bits, the output. 

 

 

How to determine the Key schedule K1...K16 from the key K 

 

The total key including parity bits is 64 bits. The parity bits are bits 8, 16, 24, ... 64. The 

other 56 bits are the key K. Here is how you compute each Ki : 

 

1) Compute PC-1(K) = C0D0, where C0 is the leftmost 28 bits of PC-1(K), and D0 is the 

rightmost 28 bits of PC-1(K). PC-1 is a fixed permutation, also stated in the text. 

 

2) Here is the computation of the key schedule: 

 

    for i=1 to 16 { 

        Ci = LSi(Ci-1) 

        Di = LSi(Di-1) 

        Ki = PC-2(CiDi) 

    } 

 

    PC-2 is another fixed permutation. LSi is a left-shift of either 1 bit or 2 bits. If i=1,2,9,  

    or 16, then LSi is a left-shift of 1 bit. Otherwise it is a two bit left shift. 

 

 



Characteristics of the S-boxes, as pointed out by the NSA 

 

1) Each row is a permutation of the values 0, 1, ..., 15. 

2) No S-box is a linear or affine function of its inputs. 

3) Changing one input bit to an S-box causes at least 2 output bit changes. 

4) For all x, S(x) and S(x  001100) differ in at least 2 digits. 

5) S(x)  S(x  11ef00), for all binary bits e and f. 

6) If you fix a single input bit and observe a particular output bit, that output bit is 

relatively random. (The 32 possible inputs (when fixing a bit) lead to at worst a 13-19 

split of 0s and 1s in any particular output bit.) 

 

Cryptanalysis of DES: Differential Cryptanalysis 

 

This is a known-plaintext attack that requires many pairs of plaintext-ciphertext blocks. 

The key observation behind this technique is as follows: 

 

Imagine two pairs matching pairs (P1, C1) and (P2, C2). Imagine if the ciphertexts were 

created by XORing the plaintexts with a key, K, then we have: 

 

 C1 = P1  K, and  C2 = P2  K 

 

Now compute 

 

 C1  C2 =  (P1  K)  (P2  K) = P1  P2 

 

Thus, the XOR of the two plaintexts is the SAME as the XOR of the two ciphertexts.  

 

This will not be the case with DES, in a regular mode, in fact, there will be a difference in 

the XOR of the ciphertexts as compared to the XOR of the plaintexts. The key behind 

differential cryptanalysis is examing whether or not there is a PATTERN between the 

differences in the XORs of pairs of plaintexts and pairs of ciphertexts. 

 

As mentioned previously, the only part of the DES algorithm that isn't linear is the S-

boxes, thus, we will confine your cryptanalysis to these S-boxes. Here's a description of 

the technique: 

 

Let two inputs to Sj be Bj and Bj
*. Then, we will refer to Bj  Bj

* as the input x-or. 

Similarly, we will refer to Sj(Bj)  Sj(Bj
*) as the output x-or. Also, let X' = X  X*, for 

any bitstring X and X*. 

 

Next, define delta(Bj
') to consist of the ordered pairs (Bj, Bj

*) having the input x-or of Bj
'. 

There are 64 elements in this set. 

 

For each of the 64 values in this set, we can calculate the corresponding output x-or. It is 

possible that these output x-ors are not evenly distributed. This will be the "weakness" 

that will be exploited in this technique. 



Let's take a look at S-box #1, and consider the set delta(110100) = { (000000, 110100), 

(000001, 110101), ... , (111111, 001011)}. 

 

Now, for each ordered pair, such as the first one, calculate S1(000000) = 1110, and 

S1(110100) = 1001, then take the xor of these, yielding 0111, now we tally that we have 

seen the output x-or 0111 (or 7), once. Doing this tally for all 64 ordered pairs yields the 

following output frequencies: 

 

out x-or 0000 0001 0010 0011 0100 0101 0110 0111 

freq 0 8 16 6 2 0 0 12 

out x-or 1000 1001 1010 1011 1100 1101 1110 1111 

freq 6 0 0 0 0 8 0 6 

  

In this example, only 8 of the 16 possible outputs occur. In general, if we fix an S box 

and an input x-or, 75%-80% of the outputs typically occur. 

 

Now, define INj(Bj
', Cj

') to be the set of input values to S-box j that create an output-xor 

of Cj
', when our input x-or is Bj

'. For example, for Bj
' = 110100, and Cj

' = 0011, we have 

IN1(110100, 0011) = { 000001, 000010, 010101, 100001, 110101, 110110} because 

S1(000001)  S1(110101) = 0011. (To see this, note that S1(000001) = 0000 and 

S1(110101) = 0011.) Similarly S1(000010)  S1(110110) = 0011, and S1(010101)  

S1(100001) = 0011. 

 

Advanced Encryption Standard (AES) 

 

In 1999, NIST decided that DES was no longer secure due to the increasing speed of 

computers. They solicited algorithms to replace DES to be the new government standard, 

AES. There were five finalists chosen, and of those, the winning entry was submitted by 

Joan Daemon and Vincent Rijment and is called Rijndael (pronouced "rain-doll".) 

 

Their cipher, along with the other finalists, adhered to the following criteria laid out by 

NIST: 

 

1) Symmetric block cipher with three possible key lengths: 128 bits, 192 bits and 256 

bits. 

 

2) More secure than Triple-DES 

 

3) Must be part of the public domain, royalty free 

 

4) It should remain secure for at least 30 years. 

 

The algorithm utilizes mathematics with polynomials within the field GF(28) modulo the 

irreducible polynomial m(x) = x8 + x4 + x3 + x + 1. The details of this are beyond the 

scope of this class, but a method to carry out all the steps necessary to run AES will be 

given without the mathematical explanation of what is really happening. 



For 128-bit AES, the algorithm runs 10 rounds. For 192-bit AES, it runs 12 rounds. For 

256-bit AES, it runs 14 rounds. Only the 128-bit AES will be discussed here in detail. 

 

Assume that we have a block of 128 bits, split into 16 bytes, labeled a0,0, a1,0, a2,0, a3,0, 

a0,1, a1,1, a2,1, a3,1, a0,2, a1,2, a2,2, a3,2, a0,3, a1,3, a2,3, and a3,3. You can visualize these 16 

bytes filling up four columns of four bytes, with the first four elements in the first 

column, the second four elements in the second column, etc. 

 

The following is repeated for 10 rounds: 

 

1) Substitute bytes 

 

For each of the sixteen bytes, look up their substitute in the s-box substitution chart, 

creating the new state matrix b0,0, b1,0, b2,0, b3,0, b0,1, b1,1, b2,1, b3,1, b0,2, b1,2, b2,2, b3,2, b0,3, 

b1,3, b2,3, and b3,3. This s-box is actually created using mathematical inverses mod m(x) in 

the field GF(28). But, we will skip these details here. For our purposes, we can simply 

look up each substitution value. 

 

2) Shift rows 

 

In row i, perform a cyclic left shift of i bytes. (Note: The rows are numbered 0 through 

3.) This will result in the following matrix: 

 

b0,0 b0,1 b0,2 b0,3 

b1,1 b1,2 b1,3 b1,0 

b2,2 b2,3 b2,0 b2,1 

b3,3 b3,0 b3,1 b3,2 

  

3) Mix columns 

 

"Multiply" the state matrix with the following matrix: 

 

 



















02010103

03020101

01030201

01010302

 

 

Now this isn't regular multiplication, it's multiplication in the field mentioned before. 

Also, instead of adding the four terms in each operation, the four terms get XORed 

together. Multiplying by 01 is just the identity, and multiplying by 03 is the same as 

multiplying by 01 and multiplying by 02 and XORing the two results. Thus, the only 

thing that has to be described is multiplying by 02: 

 

To multiply a byte by 02 (for AES, not in general), do the following: 

 



1) Left-shift by 1 bit. 

2) If the left-most bit of the original value was a 1, XOR the result from step 1 with 

00011011. 

 

Here are three examples: 

 

4E x 02 = 01001110 x 00000010 = 10011100 = 9C (just perform the left shift) 

 

A7 x 02 = 10100111 x 00000010 = 01001110 XOR 00011011 = 01010101 = 55 

 

C9 x 03 = 11001001 x 01 XOR 11001001 x 02 =  

 

 = 11001001 XOR 110010010 

 = 11001001 XOR 10010010  

          XOR  00011011 

 

 = 11001001 XOR 10001001 

 

 = 11001001 XOR 

    10001001 

 = 01000000 (40) 

     

 

(Note: The typical convention is to write bytes as two hex characters.) 

 

4) Add Round Key 

 

In this last phase of each round, the state matrix is simply XORed with the key for that 

particular round. 

 

 

Now, we must discuss how to generate the round keys from the original 128-bit key. 

(Each round key is also 128 bits.) 

 

Here is pseudocode which shows how to produce the round keys (taken from Stallings 

pg. 160): 

 

KeyExpansion(byte key[16], word w[44]) { 

 

  word temp; 

 

  for (i=0; i<4; i++) 

    w[i] = (key[4i], key[4i+1], key[4i+2], key[4i+3]); 

 

  for (i=4; i<44; i++) { 

    temp = w[i-1]; 



    if (i%4 == 0) 

        temp = SubWord(RotWord(temp)) XOR Rcon[i/4]; 

    w[i] = w[i-4] XOR temp; 

  } 

} 

 

Normally, we simply XOR two previous words (32 bits – the last four, and the fourth to 

last word) to get the new word. But, for each multiple of 4, we do a special operation on 

temp. Namely, we first perform a cyclic left-shift of one word to it (this is the RotWord), 

then we perform a byte substitution on each byte in it based on the original S-box, also 

used in the beginning of the algorithm, and finally we XOR it with a value stored in the 

array Rcon. Here are the values: 

 

j 1 2 3 4 5 6 7 8 9 10 

RCon[j] 01 02 04 08 10 20 40 80 1B 36 

 

This array starts with the value 01 in the first index, and all subsequent indexes store a 

value obtained by doubling the previous value in the field discussed earlier. In all cases 

except for going from index 8 to 9, this is just regular doubling. Here's how we calculate 

index 9: 

 

80 x 02 = 10000000 x 00000010 = 00000000 XOR 00011011 = 00011011 = 1B. 

 

(This was covered a bit earlier in these notes – we are just multiplying by 2 in the field.) 


