
Chapter 6 Notes 

 

Common functions with bits 

 

Here is the truth table for XOR: 

 

A B BA  

0 0 0 

0 1 1 

1 0 1 

1 1 0 

 

One nice thing about XOR is that it is its own inverse. 

 

Also, for a block of bits, two typical operations are left and right shifts. Each shift can 

either be a regular shift or a cyclical shift. 

 

In a right shift, all the bits move right. Here is an example: 

 

00101101 shifted to the right by 2 bits becomes 00001011 

00101101 with a cyclical shift to the right of 2 bits becomes 01001011 

 

The key difference with a cyclical shift is that when you "move" a bit off to the right it 

then goes to the leftmost location. 

 

A left shift works similarly: 

 

01101101 shifted to the left by 2 bits becomes 10110100 

01101101 with a cyclical shift to the left of 2 bits becomes 10110101 

 

Numerically, a right shift divides by 2 and a left shift multiplies by 2. 

 

Stream Cipher 

 

A stream cipher requires a random "stream" of bits to use as a key, which we can then 

XOR with the plaintext. One reason this is desirable is that XOR is efficiently 

implemented in hardware. In general, we will have a key which will "start of" the random 

bit stream and then use it in a manner similar to the autokey cipher, where a function of 

the key and other information will produce the future bits. 

 

There are two types of key generators: 

 

1) synchronous - independent of the plaintext stream. If a ciphertext character is lost in 

transmission, the ciphertext and keystream will be misaligned and they will have to be 

realigned to recover the plaintext 

 



2) self-synchronous - keystream produces the keystream from knowledge of the previous 

ciphertext characters. If there is an error in transmission, the keystream will correct itself 

after n correct ciphertext characters. 

 

 

Linear Feedback Shift Registers 

 

A shift register constantly performs right-shifts, but replaces the most-significant bit with 

the new bit in the stream. 

 

For example if at one point in time a shift register contained 01101011 then after 

performing a shift, if the new bit into the stream was 1, it would contain 10110101. 

 

This in and of itself can not create a stream of bits that seem random. We need some way 

of calculating the bit that gets shifted in! 

 

In a LFSR register, the method of doing this is calculating the XOR of some specified 

subset of bits. 

 

Let the contents of the register be denoted b8b7b6b5b4b3b2b1. For this example, define the 

function to determine the new bit as follows: f(b8b7b6b5b4b3b2b1) = 641 bbb  . 

 

Here is an example of this LFSR: 

 

Time  Contents 

0  01101101 

1  10110110 

2   11011011 

3  01101101 

4  10110110, etc. 

 

One can run an LFSR indefinitely, given a set of initial contents and a function to use to 

calculate the next bit. Obviously any LFSR will start repeating after a certain period of 

time. Since we know with n bits, there are 2n configurations of those n bits, it stands to 

reason that the period of any LFSR of n bits is no more than 2n. It turns out that the real 

maximum is 2n - 1, since you never want a stream with all 0s. Can you figure out why? 

 

LFSR Period Analysis 

 

A general LFSR function can be expressed as follows: 

 

nnn bcbcbcb  ...22111 , 

 

where ci = 1, if that bit is selected for the xor function, and is 0 otherwise. In our example 

above, c1, c4, and c6 are 1 while c2, c3, c5, c7, and c8 are 0. 

 



We can create a polynomial from a given LFSR as follows: 
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Given the characteristic polynomial of an LFSR, it turns out that the LFSR has a maximal 

sequence of bits if that polynomial is primitive/irreducible. (This means that the 

polynomial can not be factored and the smallest integer k for which p(x) divides xk - 1 is 

2n - 1.) 

 

As an example, if we use the function b3 = 31 bb   with a LFSR of three bits, we produce 

a maximal cycle of bits: 

 

111 -> 011 -> 101 -> 010 -> 001 -> 100 -> 110 -> 111 

 

An example of a LFSR with four bits that doesn't produce the maximal cycle is one with 

the following function: b4 = 4321 bbbb  . 

 

Here are the three separate cycles this produces: 

 

1111 -> 0111 -> 1011 -> 1101 -> 1110 -> 1111 

0001 -> 1000 -> 1100 -> 0110 -> 0011 -> 0001 

1010 -> 0101 -> 0010 -> 1001 -> 0100 -> 1010 

 

Random Bit Tests 

 

Although it's impossible to prove if a stream of bits is random, we can check to see if a 

stream of bits satisfies some standard qualities of a theoretically random stream of bits. 

We would like our key bitstreams to be random so that Eve can't determine patterns in 

the key bitstream. 

 

Here is an example of a set of test from the FIPS 140-1 poker set: 

 

For a stream of 20,000 random bits: 

 

1) The number of 0s must be in between 9654 and 10346 

 

2) The distribution of the four bit segments (0 - 15) should be roughly equal. For the 

standard, let ni represent the number of occurrence of i when we divide the bit stream up 

into 5000 blocks of 4 bits. Then we calculate a value X as follows: 
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This test passes if 1.03 < X < 57.4. 



 

3) A runs test sees how many runs of the same bit consecutively appear. Here are the 

requirements for our specific test: 

 

Length of Run  Number of occurrences 

1   2267-2733 

2   1079-1421 

3   502-748 

4   223-402 

5   90-223 

6+   90-223 

 

Breaking a Stream Cipher 

 

Insertion Attack 

 

Although this sort of attack is highly improbable, it does illustrate a weakness in the 

stream cipher. 

 

Consider the following message: 

 
p1 p2 p3 p4 p5 … 

k1 k2 k3 k4 k5 … 

c1 c2 c3 c4 c5 … 

 

Now, imagine being able to retransmit this plaintext, encrypted with the same keystream, 

but by changing one bit in the plaintext and inserting it into the plaintext. Let this bit be 

p: 

 
p1 p  p2 p3 p4 p5 … 

k1 k2 k3 k4 k5 k6 … 

c1 d2 d3 d4 d5 d6 … 

 

Now, given the ciphertext in these two situations, we can solve for the plaintext: 

 

k2 = p   d2 

p2 = k2   c2 

k3 = p2   d3 

p3 = k3   c3, 

etc. 

 

Consider the following example: 

 
Plaintext:  p1 p2 p3 p4 p5 p6 

Key:        k1 k2 k3 k4 k5 k6 

Ciphertext:  1  0  1  1  0  1 

 



Now, insert 1 as the second bit of the plaintext: 
  

Plaintext:  p1  1 p2 p3 p4 p5 p6 

Key:        k1 k2 k3 k4 k5 k6 k7 

Ciphertext:  1  0  1  1  1  0  0 

 

So, we first find that k2 = 1, so this yields that p2 = 1. 

That means that k3 = 0, which means that p3 = 1. 

Now, we have k4 = 0, so p4 = 1. 

Then, we have k5 = 0, so p5 = 0. 

Finally, we have k6 = 0, so p6 = 1. 

 

Recovered plaintext bits 2 through 6: 11101. 

Recovered key bits 2 through 6:         10000. 

 

Probable-Word Attack One: Matching Bit Strings 
 

If we have a section of matching plaintext and ciphertext, we can use the following idea 

to solve for the feedback function: 

 

We know that future bits of the keystream are calculated as follows: 
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where m is the size of the LFSR and the coefficients ai are the "rule" being used. 

 

If we have m of these equations (which means obtaining 2m bits of the keystream) set up, 

they would look like this: 

 

mmom kakakakak 1322111 ...    

11423122 ...   mmom kakakakak  

21524133 ...   mmom kakakakak  

… 

12122112 ...   mmmmmom kakakakak  

 

(Note: all equations are mod 2.) 

 

Note that we can rewrite using matrices as follows: 
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Since we are assuming that the key bits are known (and these can be derived from the 

first 2m matching bits of plain and ciphertext), we can solve for the rule (namely, the 

coefficients ai as follows: 
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(Remember that all calculations are done mod 2.) 

 

Probable-Word Attack Two: Word Match 

 

I am skipping this section due to the fact that the attack described in the book only works 

if the feedback function only xor's two previous bits. (The book mentions that the attack 

can be generalized to more bits, but it's not clear, based on its description, how to perform 

this generalization.) 

 

Other Stream Cipher Implementations 

 

To complicate a stream cipher, one could use multiple LFSR's. One idea is the following: 

have several LFSR's generate their streams of pseudorandom bits. At each "cycle" select 

one of the several LFSR's and use the bit that it generated for that cycle as the chosen bit. 

In order to do this random selection, one more LFSR could be used. 

 

The name of the device that selects one signal out of several is a multiplexer. A 4-1 

multiplexer takes in 4 inputs, and selects one of the 4 as the output. Here is a picture of 

the scenario described above: 

 

LFSR 2------>|--------| 

LFSR 3------>| MUX |----> 

LFSR 4------>|           | 

LFSR 5------>|--------| 

                            ^ 

               LFSR1-| (2 bits at a time) 

 

The bottom LFSR generates 2 bits at each cycle, while the others generate one. The two 

bits (00, 01, 10 or 11) determine which of the four signals above is "taken" for each clock 

cycle. 

 

RC4 

 

The algorithm varies based on a parameter n, which is typically set at 8. There are two 

arrays in the algorithm, an S array and a key array. Each of these arrays has N = 2n, 

typically 256, values in it. S is initialized to store the values 0 through 255, in that order. 



The key is initialized by the user to store 256 values in between 0 and 255, inclusive. 

Since it's cumbersome to have such a large key, typically a 4 byte key is chosen and this 

is repeated as necessary. (Essentially, for i > 3, key[i] = key[i-4].) 

 

The first part of the algorithm randomizes the S array using the key as follows: 

 

int j = 0; 

for (i=0; i<256; i++) { 

   j = (i + S[i] + K[i])%256; 

   swap(S[i], S[j]); 

} 

 

Conceptually, what's happening here is that we loop through each element in S, and then 

pick a random element to swap it with in S. (j is this index, which should essentially be 

random...) 

 

Once this is done, our S array is effectively permuted. At this point, we go through the 

following steps to produce one byte for the keystream (note: we start i and j back at 0.) 

 

i++; 

j = (j+S[i])%256 

swap(S[i],S[j]); 

t = (S[i]+S[j])%256; 

k = S[t]; 

 

The byte produced is k, which is the value stored in S at index t. Index t is computed as 

the sum of seemingly random elements in S. Notice that the swap does NOT change the 

value of t, but the swap makes sure that the array is changing constantly. 

 

To add more bytes to the keystream, simply repeat the steps above as many times as 

necessary (without resetting i or j again). 

 

Our text simply mentions that doing a brute force search on RC4 is not feasible. There 

are some keys (2-2n fraction of them) that are impossible, but this reduces the search space 

in a very minor way. An attack on a 40-bit RC4 key has been performed in 159 days. 

This makes it a feasible threat, but of course, one could always use a larger key very 

easily. 

 

A5 

 

The keystream created by A5 consists of three LFSRs, of sizes 19 bits, 22 bits and 23 

bits. The output stream is the XOR of the outputs of these three registers. 

 

It is an irregularly clocked system, which simply means that not each of the registers shift 

at each time cycle. Rather, each one shifts some times and not other times, and when each 

one shifts is not easily correlated to the other two. 



The picture on page 122 of the text captures the operation of the system rather well. 

 

The three registers are initialized with the key (64 bits), and then the system is run. The 

output is always XOR(A[18], B[21], C[22]). To advance to the next clock cycle, we 

calculate MAJ(A[9],B[11],C[11]), then this value is XORed with A[9], B[11] and C[11], 

individually to see whether or not A, B or C shift. (Any subset of them could theoretically 

shift on a single time step.) 

 

A couple weaknesses of A5 are that by knowing the contents of the registers A and B, a 

known-plaintext attack would compromise the values in C. Also, multiple initial 

positions lead to the same keystream, so there are fewer than 264 possible key streams. 

 

A5 is used to encrypt voice communication on GSM systems, in 228 bit blocks. 

 

 

Cellular Automata 

 

A cellular automata is an array, which changes at each time step based on some sort of 

rule. If applied to an infinite array, these changes could be indefinite. On a finite array, 

they create a cyclic pattern, just like an LFSR. 

 

Here's a basic example with a 7-bit Cellular Automata: 

 

Let the following be the initial contents: 

 

index 0 1 2 3 4 5 6 

value 0 0 1 0 1 0 0 

 

Now, we must define a "rule" which describes how the automata changes. Our rule will 

involve the bit itself and its immediate neighborhood. Here is an example of a rule: 

 

neighborhood 000 001 010 011 100 101 110 111 

new value 0 0 0 1 0 1 1 1 

 

Thus, when deciding what to change a bit A[i] to in time step t+1, look at the three bits 

A[i-1], A[i] and A[i+1] in time step t. Look up this neighborhood on the chart above, and 

then place the new value accordingly. Here is what would happen to the automata above 

for the next two time steps 

 

index 0 1 2 3 4 5 6 

t=0 0 0 1 0 1 0 0 

t=1 0 0 0 1 0 0 0 

t=2 0 0 0 0 0 0 0 

 (from this point, this will just be all 0s) 

 

Now, let's try another rule: 



 

neighborhood 000 001 010 011 100 101 110 111 

new value 1 0 1 1 0 1 0 1 

 

Here are a few time steps with the same initial starting conditions:  

 

index 0 1 2 3 4 5 6 

t=0 0 0 1 0 1 0 0 

t=1 1 0 1 1 1 0 1 

t=2 1 1 1 1 0 1 1 

 

To generate a stream of "random bits" we can simply select one bit in the cellular 

automata (for example, bit 5) at each time step. 

 

The behavior of two dimensional systems can be significantly more complex than of one 

dimensional systems.  


