

Notes about mod

First we'll define divisibility. We say that $a | b$ if and only if there is some integer c such that $b = ac$. In English, " $a | b$ " would be read as " b is divisible by a ."

For example, $6 | 18$, $197 | 0$ and $34 | 34$.

Now, let's define mod:

$a \equiv b \pmod{n}$ if and only if $n | (a - b)$. (This just means there exists some integer c such that $a - b = nc$.)

In essence, this is true if n divides evenly into the difference of a and b . Alternatively, we can think of it as follows: when a and b are divided by n , they leave the same remainder.

In our class, typically we will make some mathematical calculation and then we'd like to know what letter a particular number corresponds to. What we really want is give some integer a , we want to find a value b such that $0 \leq b < 26$ and $a \equiv b \pmod{26}$.

For example, if we get 194 after some calculation and want to know what letter it is, our goal is to find the unique value of b such that

$$194 \equiv b \pmod{26}, \text{ with } 0 \leq b < 26$$

We can determine that $194 \equiv 12 \pmod{26}$. We can verify this because $194 - 12 = 182$ and $182 = 26 \times 7$. The easy way to find b when the starting value is greater than 26 is to divide 26 into the number. When we divide 26 into 194, it goes in 7 times, leaving a remainder of 12, which is our desired value.

Consider a second example:

$$-85 \equiv b \pmod{26}, \text{ with } 0 \leq b < 26$$

By dividing, we find that $-85 \equiv -7 \pmod{26}$, since $-85 - (-7) = -78$ and $-78 = 26 \times (-3)$, but we also see that we haven't gotten the desired value of b either. We can simply add 26 to -7 to do that, since adding or subtracting multiples of 26 will "create" other values equivalent to the original. Thus, we have:

$$-85 \equiv -7 \equiv 26 - 7 \equiv 19 \pmod{26}$$

Now, let's look at some rules with mod:

if $a \equiv b \pmod{n}$, then $a + c \equiv b + c \pmod{n}$
if $a \equiv b \pmod{n}$, then $ac \equiv bc \pmod{n}$ and $ac \equiv bc \pmod{cn}$,
but this latter fact is rarely used
if $a \equiv b \pmod{n}$, then $a^k \equiv b^k \pmod{n}$
if $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $a+c \equiv b+d \pmod{n}$, and
 $ac \equiv bd \pmod{n}$

These are fairly straight-forward to apply. However, division rules are tricky since we are now dealing with integers. If we have a situation such as

$$3a \equiv 16 \pmod{26}$$

we deal with it by multiplying through by the inverse of 3 (mod 26) which is 9, to yield the following equation:

$$\begin{aligned} 9(3a) &\equiv 9(16) \pmod{26} \\ 27a &\equiv 144 \pmod{26} \\ a &\equiv 14 \pmod{26} \end{aligned}$$

Here is a list of the inverses mod 26:

1
3, 9
5, 21
7, 15
11, 19
17, 23
25

(Note: 1 is an inverse of itself as is 25. The rest are pairs, so 3 is the inverse of 9 and 9 is the inverse of 3 (mod 26), etc.)

But what about an equation like

$$4a \equiv 14 \pmod{26} \quad \text{or} \quad 4a \equiv 7 \pmod{26}$$

This literally means:

$4a - 14 = 26c$, for some int c.
 $2a - 7 = 13c$, so
 $2a \equiv 7 \pmod{13}$ is all we can ascertain, the following above implies that $a \equiv 10 \pmod{13}$, which can be determined by multiplying through by 7.

$4a - 7 = 26c$, for some int c
 $7 = 4a - 26c$
 $7 = 2(2a - 13c)$, which is impossible since 7 is NOT divisible by 2.

If we find that $a \equiv 10 \pmod{13}$, that means that $a \equiv 10 \pmod{26}$ or $a \equiv 23 \pmod{26}$.

We can see this because if $a - 10 = 13c$ for some integer c , then setting $c = 0, 1$ shows that a could be 10 or 23. Setting $c = 2$ shows that a could be 36, but 36 is equivalent to 10 mod 26.

This information is relevant in the following situations:

- 1) Solving for the inverse of a matrix
- 2) Solving for a key in a known plaintext attack on the Hill cipher

For the former, if it is known that the matrix does have an inverse, then there will be a unique solution that satisfies all of the given equations. To take an example from the notes (chapter 4), when solving the equation $\begin{pmatrix} 3 & 1 \\ 6 & 5 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{26}$, we found that $c \equiv 8 \pmod{26}$. We could have used that and substituted into the equation

$$\begin{aligned} 6a + 5c &\equiv 0 \pmod{26}, \text{ yielding} \\ 6a + 5(8) &\equiv 0 \pmod{26} \\ 6a &\equiv -40 \pmod{26} \\ 6a &\equiv 12 \pmod{26} \\ 3a &\equiv 6 \pmod{13} \\ a &\equiv 2 \pmod{13}, \text{ which means } a \equiv 2 \pmod{26} \text{ or } a \equiv 15 \pmod{26} \end{aligned}$$

Which of these two is correct can only be ascertained by plugging into the other relevant equation:

$$3a + c \equiv 1 \pmod{26}$$

For #2, it may be the case that the equations formed don't provide a unique solution for the key. This was illustrated in the notes for chapter 4. Here we can narrow the key down to a few options and from there we can simply try out all of the candidates.