Notes about mod

First we’ll define divisibility. We say that \(a \mid b \) if and only if there is some integer \(c \) such that \(b = ac \). In English, “\(a \mid b \)” would be read as “\(b \) is divisible by \(a \).”

For example, \(6 \mid 18 \), \(197 \mid 0 \) and \(34 \mid 34 \).

Now, let’s define mod:

\[a \equiv b \pmod{n} \text{ if and only if } n \mid (a - b). \]
(This just means there exists some integer \(c \) such that \(a - b = nc \).)

In essence, this is true if \(n \) divides evenly into the difference of \(a \) and \(b \). Alternatively, we can think of it as follows: when \(a \) and \(b \) are divided by \(n \), they leave the same remainder.

In our class, typically we will make some mathematical calculation and then we’d like to know what letter a particular number corresponds to. What we really want is give some integer \(a \), we want to find a value \(b \) such that \(0 \leq b < 26 \) and \(a \equiv b \pmod{26} \).

For example, if we get 194 after some calculation and want to know what letter it is, our goal is to find the unique value of \(b \) such that

\[194 \equiv b \pmod{26}, \text{ with } 0 \leq b < 26 \]

We can determine that \(194 \equiv 12 \pmod{26} \). We can verify this because \(194 - 12 = 182 \) and \(182 = 26 \times 7 \). The easy way to find \(b \) when the starting value is greater than 26 is to divide 26 into the number. When we divide 26 into 194, it goes in 7 times, leaving a remainder of 12, which is our desired value.

Consider a second example:

\[-85 \equiv b \pmod{26}, \text{ with } 0 \leq b < 26 \]

By dividing, we find that \(-85 \equiv -7 \pmod{26} \), since \(-85 - (-7) = -78 \) and \(-78 = 26 \times (-3)\), but we also see that we haven’t gotten the desired value of \(b \) either. We can simply add 26 to -7 to do that, since adding or subtracting multiples of 26 will “create” other values equivalent to the original. Thus, we have:

\[-85 \equiv -7 \equiv 26 - 7 \equiv 19 \pmod{26} \]
Now, let’s look at some rules with mod:

if \(a \equiv b \pmod{n} \), then \(a + c \equiv b + c \pmod{n} \)
if \(a \equiv b \pmod{n} \), then \(ac \equiv bc \pmod{n} \)
but this latter fact is rarely used
if \(a \equiv b \pmod{n} \), then \(a^k \equiv b^k \pmod{n} \)
if \(a \equiv b \pmod{n} \) and \(c \equiv d \pmod{n} \), then \(a+c \equiv b+d \pmod{n} \), and
\[ac \equiv bd \pmod{n} \]

These are fairly straight-forward to apply. However, division rules are tricky since we are now dealing with integers. If we have a situation such as

\[3a \equiv 16 \pmod{26} \]

we deal with it by multiplying through by the inverse of 3 (mod 26) which is 9, to yield the following equation:

\[9(3a) \equiv 9(16) \pmod{26} \]
\[27a \equiv 144 \pmod{26} \]
\[a \equiv 14 \pmod{26} \]

Here is a list of the inverses mod 26:

1
3, 9
5, 21
7, 15
11, 19
17, 23
25

(Note: 1 is an inverse of itself as is 25. The rest are pairs, so 3 is the inverse of 9 and 9 is the inverse of 3 (mod 26), etc.)

But what about an equation like

\[4a \equiv 14 \pmod{26} \quad \text{or} \quad 4a \equiv 7 \pmod{26} \]

This literally means:

\[4a - 14 = 26c, \text{ for some int } c \]
\[2a - 7 = 13c, \text{ so } \]
\[2a \equiv 7 \pmod{13} \]
\[\text{is all we can ascertain, the following above implies that } a \equiv 10 \pmod{13}, \]
\[\text{which can be determined by multiplying through by 7.} \]

\[4a - 7 = 26c, \text{ for some int } c \]
\[7 = 4a - 26c \]
\[7 = 2(2a - 13c), \text{ which is impossible since } 7 \text{ is NOT divisible by 2.} \]
If we find that \(a \equiv 10 \pmod{13} \), that means that \(a \equiv 10 \pmod{26} \) or \(a \equiv 23 \pmod{26} \).

We can see this because if \(a - 10 = 13c \) for some integer \(c \), then setting \(c = 0, 1 \) shows that \(a \) could be 10 or 23. Setting \(c = 2 \) shows that \(a \) could be 36, but 36 is equivalent to 10 mod 26.

This information is relevant in the following situations:

1) Solving for the inverse of a matrix
2) Solving for a key in a known plaintext attack on the Hill cipher

For the former, if it is known that the matrix does have an inverse, then there will be a unique solution that satisfies all of the given equations. To take an example from the notes (chapter 4), when solving the equation

\[
\begin{pmatrix}
3 & 1 \\
6 & 5
\end{pmatrix}
\begin{pmatrix}
a \\
c
\end{pmatrix}
= \begin{pmatrix}1 \\
0
\end{pmatrix} \pmod{26},
\]

we found that \(c \equiv 8 \pmod{26} \). We could have used that and substituted into the equation

\[
6a + 5c \equiv 0 \pmod{26},
\]

yielding

\[
6a + 5(8) \equiv 0 \pmod{26}
\]

\[
6a \equiv -40 \pmod{26}
\]

\[
6a \equiv 12 \pmod{26}
\]

\[
3a \equiv 6 \pmod{13}
\]

\[
a \equiv 2 \pmod{13}, \text{ which means } a \equiv 2 \pmod{26} \text{ or } a \equiv 15 \pmod{26}
\]

Which of these two is correct can only be ascertained by plugging into the other relevant equation:

\[
3a + c \equiv 1 \pmod{26}
\]

For #2, it may be the case that the equations formed don’t provide a unique solution for the key. This was illustrated in the notes for chapter 4. Here we can narrow the key down to a few options and from there we can simply try out all of the candidates.