Strings

All the variables we’ve seen so far are known as “primitive” types in Java. This means that they are the only types provided in the basic implementation of the language. However, one of the strengths of Java is that they provide a very large Application Programming Interface (API), which amounts to extra add-ons to the language that make it a great deal easier to use. A reasonable analogy would be the difference between getting the most simple car to getting a car with all sorts of features like cruise control, automatic voice activated dialing, backup camera, keyless entry, etc.

One of the most commonly used features in Java’s API is the String class. A string is simply a sequence of characters put together. A great deal of data we typically store can be stored in a string. For example, a person’s name, where they live, etc.
How to Read in a String from the User

The most basic thing one can do with a String in Java is read in a word/name from the user and store it in a String variable. Here is a short segment of code that prompts the user to enter their name, reads it in, and then prints out a personalized message to the user:

Scanner stdin = new Scanner(System.in);

System.out.println(“Hi, what is your name?\n”);

String name = stdin.next();

System.out.println(“Nice to meet you, “+name+”!”);

As you’ve been taught, once a Scanner object has been declared, you can use it to read in information from the keyboard. The method which is used to read in a String is next. (Remember that the method to read in an int is nextInt and the method to read in a double is nextDouble.)

Once the name the user enters is stored in the variable name, we can then use it. In this program, all we do is print it out. Remember, to print out any information stored in a variable, we just want to print the variable itself. If we want to also print out a string literal (as we do in this example), we must use the plus sign to concatenate separate strings.

How to Initialize a String Directly

The proper way to initialize a String is as follows:

String name = new String(“Rebecca”);

Because Java wants to hide details of how Strings work to make them easier, the following works also:

String name = “Rebecca”;

String Class Methods

The point of an API is to provide the programmer with several methods they can call to make their job easier. Since Java’s API is arranged in classes, and classes define objects, Java’s API gives the programmer methods which allow her to use the objects she defines effectively.
Some of the facilities that Java provides a programmer if they define a String object are as follows:

1) Accessing an individual character in a string

2) Comparing two Strings in (roughly) alphabetical order

3) Checking to see if two strings are equal

4) Obtaining the number of characters in a string.

5) Creating a lower case (or upper case) version of a string.

In particular, here is a listing of several of the methods in the String class in Java:
// Returns the character at the designated index of this

// String. The first valid index is 0.

char charAt(int index);

// Returns a negative integer if this string comes before

// str, 0 if they are equal and a positive integer if this

// string comes after str, lexicographically.

int compareTo(String str);

// Returns a new String that is the concatenation of the

// this String and str.

String concat(String str);

// Returns true if and only if this String has identical

// contents to str.

boolean equals(String str);

// Returns true if and only if this String has identical

// contents to str, ignoring differences in the case of

// letters.

boolean equalsIgnoreCase(String str);

// Returns the number of characters in this String.

int length();

// Returns a String that has each occurrence of oldChar

// in this String replaced with newChar.

String replace(char oldChar, char newChar);

// Returns a new String that starts at character
// beginIndex in this String and ends at endIndex-1.
String substring(int beginIndex, int endIndex)
// Returns an uppercase version of this String.

String toUpperCase();

A complete version of the String documentation can be found here:

http://download.oracle.com/docs/cd/E17409_01/javase/7/docs/api/
These descriptions can feel intimidating. In particular, one might ask, “what does this String refer to?” The answer to that question is that in order to call any String method, you MUST call it on some String object. Thus, the “this” refers to the object upon which the method is called.
To call a method, you must first name the object, follow this with a dot, and then list the method name. From there, you must put parentheses. Inside the parentheses, you list all the information the method desires. If there is more than one piece of information, then each piece must be separated by a comma.
For example, consider the following segment of code:

String food1 = “pizza”;

String food2 = “spaghetti”;

char c1 = food1.charAt(0);

char c2 = food2.charAt(0);

System.out.println(“My favorite food begins with “+c1);

System.out.println(“Your favorite food begins with “+c2);
When we call charAt, we MUST tell Java WHICH string we want to call it upon, because there may be more than one String in our program. (In this case, we must specify whether we want the first character in the string food1 or the string food2.) The charAt method takes in an integer representing which character in the string we want to obtain, with 0 representing the place of the first character. (The rest are in sequential order, so food1.charAt(4) would return ‘a’, for example.)

Note that we can shorten this example by never declaring the char variables and instead printing directly:

System.out.println(“My favorite food begins with “+food1.charAt(0));

The output of this segment of code is
My favorite food begins with p
Your favorite food begins with s
One more String Example

You will learn more about Strings gradually as we learn more about Java. Let’s just look at one last example that shows the use of several String methods. Pay careful attention to how each method is called, especially the replace and substring methods and how the two parameters are separated by a comma.

public class StringTest {

 public static void main(String[] args) {

 String test1 = new String("Happy Birthday");

 String test2, test3, test4;

 test2 = test1.concat(" Trisha!");

 System.out.println("test1 = "+test1);

 System.out.println("test2 = "+test2);

 test3 = test1.replace('H', 'M');

 test3 = test3.replace('a', 'e');

 test3 = test3.replace('p', 'r');

 System.out.println("test1 = "+test1);

 System.out.println("test3 = "+test3);

 test4 = test2.substring(11, 20);

 System.out.println("test2 = "+test2);

 System.out.println("test4 = "+test4);

 }

}

Here is the output to this program:

test1 = Happy Birthday

test2 = Happy Birthday Trisha!

test1 = Happy Birthday

test3 = Merry Birthdey

test2 = Happy Birthday Trisha!

test4 = day Trish

String Details

Since Strings are so ubiquitous, Java tries to hide some of the details of how they work and tries to make them as intuitive as possible. That’s why the line

String name = “Rebecca”;

works as the programmer intends it to, but hides the proper syntax of this line, which is:
String name = new String(“Rebecca”);

To make sure we get all of our terminology correct, String is a class. A class is a blueprint for an object. An actual individual String is an object. When we declare a variable, such as

int value;

The type is int and the variable is value. For primitives, the picture that represents this situation is as follows:

[image: image1.png]

The difference between primitives and Strings (and all other non-primitives in java) is that the name of the variable is just a reference to the object. Thus, the appropriate picture for what happens with the line of code that assigns name to “Rebecca” is the following:

[image: image2.png]name —— Rebecea

The actual String object, which resides in the box, doesn’t actually have a name. Rather, the variable name is just a reference to that object. The reason this is important is that the way a single equal sign works with references is somewhat different than it works with primitive variables.

For example, if we were to execute the following line of code:

String notacopy = name;

The ensuing picture would be as follows:

[image: image3.png]name —— Rebecea

oo ——

If we thought that the variable was referring to the box itself, then it’s likely that our internal picture would have two boxes, both storing separate copies of Rebecca. But, what ACTUALLY happens in Java is that both name and notacopy are references. When we set one reference to another, it makes the one on the left-hand side of the equals sign point to the same object that the one on the right-hand side is pointing to.

Trace of StringTest.java

Let’s see what’s happening in the previous example shown, StringTest.java:

public class StringTest {

 public static void main(String[] args) {

 String test1 = new String("Happy Birthday"); // 1
 String test2, test3, test4;

 // 2
 test2 = test1.concat(" Trisha!");

 // 3
 System.out.println("test1 = "+test1); // 4
 System.out.println("test2 = "+test2); // 5
 test3 = test1.replace('H', 'M'); // 6
 test3 = test3.replace('a', 'e'); // 7
 test3 = test3.replace('p', 'r'); // 8
 System.out.println("test1 = "+test1); // 9
 System.out.println("test3 = "+test3); // 10
 test4 = test2.substring(11, 20); // 11
 System.out.println("test2 = "+test2); // 12
 System.out.println("test4 = "+test4); // 13
 }

}

The picture after line 2 finishes is as follows:

[image: image4.png]tesi———

Happy Birhtay

>
testh—

In particular, test2, test3 and test4 are references that aren’t pointing to anything in particular.

What line three does is run the concat method, putting together the two given Strings in the designated order, which returns a new String. The corresponding picture is:

[image: image5.png]tesi———

Happy Birhtay

test? —3Happy Birthday Trishal

>
testh—

Line 6 creates a new string by replacing each occurrence of ‘H’ with ‘M’ in the string referred to by test1. So our picture is as follows:

[image: image6.png]testl———

Happy Birhtay
test2—JHoppy Bty Trisal
test3—>] Magpy Bty

testh—

When we execute line 7, we are going to take the string currently referred to by test3 and replace each ‘a’ with an ‘e’. The corresponding picture is as follows:

[image: image7.png]tesi———

Hapy Bty

test2—JHoppy Bty Trisal

tes, | Magpy By
\> Neppy ity

testh—

The key thing to notice here is that the replace method created a new object. After that, when we set test3 to that newly created object, it basically left one of the objects, the String “Mappy Birthday”, with no reference pointing to it. From this point on, it’s impossible for the program to use this object. What Java does is run something called a garbage collector while a Java program is executing. If it sees an object that has no reference pointing to it, it cleans it up and frees that memory. The programmer doesn’t know exactly what point in time this will happen, but can be guaranteed that it will happen in a reasonable amount of time. More importantly, the programmer simply doesn’t have to worry about cleaning up this mess. (Though, they should be aware of it, so they understand what’s going on.)
After the 8th line finishes, so long as all of the garbage collection is keeping up, our picture will be as follows:

[image: image8.png]testl———

Hagy Bty
test2—JHoppy Bty Trical
testi—{Merry Bithdey

testh—

Finally, line 11 isolates the substring from the String referred to by string 2, starting at index 11, which is the character ‘d’ and ending in the index 19 which is ‘h’. (Note that these indexes account for the fact that we start counting at index 0.) Our picture after line 11 is as follows:

[image: image9.png]testl———

Hapy Bty
test2—JHoppy Bty Trisal
test3—{Merry Bihdey

testh iy Trsh

