Static Methods

Before we delve into writing our own classes, we have to talk a little bit about writing our own methods, since any functional class has methods in it. A static method is one that doesn't pertain to a specific object. Essentially, you can think of a method as a little subprogram you can call. For example, println is a method. When you call it, it performs a particular task for you. In order for a method to work properly, the caller of the method must usually give the method some information. This information is known as actual parameters. Based on these, the method will execute some task, and often return some value. The caller must then take this return value and use it accordingly.

There are two ways in which we can view methods:

1) From the viewpoint of the caller.

2) From the viewpoint of the callee.

As a method caller, all you need to know about the method is the parameters it takes in and the type of answer it returns. Consider the following method prototype:

// Calculates the area of a circle with radius r and

// returns this value.

public static double circleArea(int r);
From the standpoint of the method caller, all the caller has to do is decide what to pass to the method and how to use its return value. Here's a short program that makes use of the method above:

public static void main(String[] args) {

 Scanner stdin = new Scanner(System.in);

 System.out.println("Enter the radius of your circle.");

 int radius = stdin.nextInt();

 System.out.println("The area of your circle is "+

 circleArea(radius));

}

Notice that to call the the method, you use its name and a set of parentheses to indicate you are calling a method instead of listing a variable. Inside the parentheses, you can place ANY EXPRESSION that is the same type as that listed in the prototype. A natural question that comes up is if the names of the variable in main and in the method have to be same or different. The answer is neither!!! The names of all local variables in two different methods are independent of one another. Perhaps this is best understood by looking at a drawing that traces through what occurs when a method is called.

Consider the following valid method calls to circleArea:

double totalarea;

totalarea += circleArea(radius+3);

totalarea = totalarea - circleArea(3) - circleArea(radius);

System.out.println("The leftover area = "+totalarea);

This code segment determines the area left in a circle of area radius+3 when two circles of radii 3 and radius have been taken out of the original circle. Notice how we call circleArea in each instance to fit our needs by passing to it the appropriate parameters and appropriately using the return values.

One main rule to note at this point:

1) If a parameter is a primitive, you may pass ANY expression that evaluates to that type in its place.

2) If a parameter is an object, you MUST pass a single reference to an object of that type in its place.

Now, let's consider WRITING a static method. When you are writing a method it's really important to now worry about how it's going to be used, or the names of variables in other methods. When you write a method you have some task to achieve given some input. You should simply focus on solving that problem. One very, very, very important "rule" about methods:

The formal parameters already have values. Do NOT try to reinitialize these by reading them in from the user or anything of that matter. Your job is to simply USE the parameters as you need to to complete your task, knowing that they already have values.

Probably the best way to understand the general syntax of a method is to look at an example:

public static double circleArea(int r) {

 double area = Math.PI*r*r;

 return area;

}

The job of this method is to calculate the area of a circle and return it. In order to do this, it needs to know what the radius of the circle is. This value is passed in as r. Thus, the first line of code utilizes r for its calculation. Finally, the method must return the value to the method that called it. This is done through a return statement. All methods that have a non-void return type always terminate with a return statement.

Once you understand the mechanics of methods, the next step is utilizing them in the design of a program. This is much more difficult than it may sound at first. The difficulty is deciding when a method would be useful and the exact specifications of the method. Here are some advantages of methods:

1) They can be reused.

2) They can be versatile if designed properly.

3) They simplify thinking about a problem into small manageable chunks.

So, in designing methods, you would like to design one that can be called/used multiple times. You want to create one when it logically solves a subproblem of some sort. Once you have solutions to subproblems, it's easier to think about the big picture.

Consider the following problem:

You want the user to be able to draw various star patterns of variable sizes. Here are the choices:

1) Forward Triangle

2) Backward Triangle

3) Pyramid

Also, you can consider extending the problem to allow these three patterns of any characters.

One useful method would be one that allows you to print out a line of one type of character a certain number of times, since this is a task that occurs several times:

public static void printChars(char c, int numtimes) {

 for (int i=0; i<numtimes; i++)

 System.out.print(c);

 System.out.println();

}

With this in place, we could design methods to print out the designs for 1 and 2:

public static void forwardTri(char c, int size) {

 for (int i=1; i<=size; i++)

 printChars(c, i);

}

public static void backwardTri(char c, int size) {

 for (int i=size; i>0; i--)

 printChars(c, i);

}

Now, the beautiful thing about writing a method to do the last task is that it can be done using the previous two:

public static void Pyramid(char c, int size) {

 forwardTri(c, size);

 backwardTri(c, size-1);

}

Finally, we can make a menu method that just prints out the menu:

public static void menu() {

 System.out.println("Which option would you like?");

 System.out.println("1.Draw Forward Triangle");

 System.out.println("2.Draw Backward Triangle");

 System.out.println("3.Draw Pyramid");

 System.out.println("4.Quit");

}

Now, with all of these pieces, we can design a main to solve our task:

public static void main(String[] args) throws IOException {

 Scanner stdin = new Scanner(System.in);
 menu();

 int ans = stdin.nextInt();

 while (ans != 4) {

 if (ans < 1 || ans > 4)

 System.out.println("Sorry, that choice is invalid.");

 else if (ans < 4) {

 System.out.println("What character do you want to

 use for your shape?");

 char c = (stdin.next()).charAt(0);

 System.out.println("How big do you want your

 shape?");

 int size = stdin.nextInt();

 if (ans == 1)

 forwardTri(c, size);

 else if (ans == 2)

 backwardTri(c, size);

 else

 Pyramid(c, size);

 }

 else

 System.out.println("Thanks for playing!");

 menu();

 ans = stdin.nextInt();

 }

}

