Sorting

Sorting is probably the most classical problem in computer science. It's usually used in introductory computer science courses because the problem itself is ubiquitous and has many significantly different methods of solution. Analyzing the efficiency of some of these methods shows that one should attempt to brainstorm multiple solutions to a problem and then evaluate which one of those will be the best for their goals.

In this initial lecture on sorting, we will do the following:

1) Formally define the sorting problem

2) Cover Selection Sort.

3) Cover Insertion Sort.

You will be left to read about Bubble Sort on your own.

The Sorting Problem

Given an array of integers A that is filled in no particular order, rearrange the items in A so that A[0] (A[1] (... (A[n-1], where n is the size of the array.

Selection Sort

One way to solve the sorting problem is as follows:

At the end of each iteration, swap the largest value unsorted into the correct location. So, given the following unsorted array,

 0 1 2 3 4 5 6 7

	9
	3
	8
	4
	1
	6
	7
	2

on the first iteration, selection sort would determine that 9 was the maximal unsorted value and swap it with 2:

 0 1 2 3 4 5 6 7

	2
	3
	8
	4
	1
	6
	7
	9

On the second iteration, the algorithm won't bother looking at the 9, since it's already in the correct location. Instead, it finds 8 to be the largest unsorted value and swaps this with 7:

 0 1 2 3 4 5 6 7

	2
	3
	7
	4
	1
	6
	8
	9

Then 7 will swap with 6:

 0 1 2 3 4 5 6 7

	2
	3
	6
	4
	1
	7
	8
	9

Followed by 6 with 1:

 0 1 2 3 4 5 6 7

	2
	3
	1
	4
	6
	7
	8
	9

Notice that 4 has to swap with itself on the following iteration. In the iteration after that, 3 swaps with 1:

 0 1 2 3 4 5 6 7

	2
	1
	3
	4
	6
	7
	8
	9

Finally 1 and 2 swap to finish sorting the array.

Now that we've gone over this algorithm, the question is, how do we code it up?

So far, the one part of this algorithm I HAVEN'T discussed is how to find the maximal value that is unsorted. Let us write a method to solve this restricted problem.

First of all, it's clear that we may not always be searching the entire array. Rather we may only be searching a subsection of it. But the subsection we are searching always starts at the beginning. Secondly, we'll not only need to know the value that is maximal, but also which index it is contained in. Using this information, we can come up with the following prototype:

// Returns the index of the maximal value in the array

// values in between indexes 0 and maxindex.

public static int findMaxIndex(int[] values, int maxindex)

{

 int maxi = 0;

 for (int i=1; i <= maxindex; i++)

 if (values[i] > values[maxi])

 maxi = i;

 return maxi;

}

The key in this function is that we initialize maxi (which stores the index of the largest number seen so far), and then go through values and update maxi if we find a larger value than values[maxi].

Secondly, we'll need a function to swap the location of integers in the array. This is fairly straightfoward:

public static void swap(int[] values, int i, int j) {

 int temp = values[i];

 values[i] = values[j];

 values[j] = temp;

}

Notice the necessity of the temp variable. (Of course, there are a couple tricky ways in which it isn't necessary, but this straightforward manner of swapping two variables is the standard technique used.)

Now that we've got these methods worked out, we can now think about implementing selection sort. Basically, we have to go through the whole array, then the whole array except the last element, etc. Each time we find the index of the largest value and swap it into the correct location:

public static void SelectionSort(int[] vals) {

 for (int i=vals.length-1; i>0; i--) {

 int maxindex = findMaxIndex(vals, i);

 swap(vals, maxindex, i);

 }

}

Insertion Sort

This sort is probably similar to how you sort papers or cards.

At each iteration, you will insert the next card into an already sorted list. Here is a trace through an insertion sort:

 0 1 2 3 4 5 6 7

	9
	3
	8
	4
	1
	6
	7
	2

On the first iteration, insert 3 into the sorted list of 9:

 0 1 2 3 4 5 6 7

	3
	9
	8
	4
	1
	6
	7
	2

On the second iteration, insert 8 into the sort list of 3, 9:

 0 1 2 3 4 5 6 7

	3
	8
	9
	4
	1
	6
	7
	2

On the third iteration, insert 4 into the already sorted list of 3, 8, 9:

0 1 2 3 4 5 6 7

	3
	4
	8
	9
	1
	6
	7
	2

On the fourth iteration, insert 1:

0 1 2 3 4 5 6 7

	1
	3
	4
	8
	9
	6
	7
	2

Then insert 6:

0 1 2 3 4 5 6 7

	1
	3
	4
	6
	8
	9
	7
	2

Insert the 7:

0 1 2 3 4 5 6 7

	1
	3
	4
	6
	7
	8
	9
	2

And finally the 2:

0 1 2 3 4 5 6 7

	1
	2
	3
	4
	6
	7
	8
	9

As you can see, each iteration may change the locations of several values. Thus, we may have to make multiple swaps at each iteration, unlike Selection Sort. In particular, it makes sense to swap the current item with only contiguous elements until it gets in the right place.

So, for example, with the last iteration above, first, 2 swaps with 9, then with 8, then with 7, then with 6, then with 4, and finally with 3.

We can devise an insert method that inserts the next element into an already sorted subarray. The method must take in the array and the index of the element to be sorted:

// vals must be sorted in ascending order from index 0 to

// index curloc-1. This method inserts vals[curloc] into

// the proper location in the array so that vals will be

// sorted in ascending order from index 0 to index curloc.

public static void insert(int[] vals, int curloc) {

 int index = curloc;

 while (index > 0 && vals[index] < vals[index-1]) {

 swap(vals, index, index-1);

 index--;

 }

}

This method makes use of short-circuiting to avoid a run-time error (an array index out of bounds error). By checking index > 0 FIRST in the while loop, we avoid checking the second condition if index is 0, which would cause index-1 to be -1 and be an invalid index to vals. Also notice that we must update index inside the while loop so that we correctly maintain index as the index of the element being inserted.

Now, let's consider how we can use this to implement Insertion Sort:

public static void InsertionSort(int[] vals) {

 for (int i=1; i<vals.length; i++)

 insert(vals, i);

}

At each iteration, all we do is insert the next element!

