
(Python) Chapter 2: If Statement, Random Class, Introduction to Defining Functions 

 

2.1 Conditional Execution 

 

Basic Idea 

 

One limitation to programs created only using the statements presented in chapter 1 is that the 

same exact statements in a program will run every time the program is interpreted. The problem 

with this is that in real life, when we carry out directions, we don't always execute the same 

steps. Consider the situation of determining whether or not you will go out with a friend. If your 

homework is done, you would like to go out with your friend. But, if your homework isn't done, 

you won't go out with your friend. Similarly, in programming, it makes sense to allow 

conditional execution. Namely, if some condition is true, then execute some set of statements. 

 

Basic if Statement 

 

In Python, the syntax of the most basic if statement is as follows: 

 

if <Boolean Expression>: 

    stmt1 

    stmt2 

    ... 

    stmtn 

stmtA 

 

A Boolean expression is one that always evaluates to true or false. Details about how to create a 

Boolean expression will be covered shortly. If this expression evaluates to true, then the 

statements stmt1 through stmtn are executed in order, followed by stmtA. However, if this 

expression evaluates to false, then all of these statements are skipped and stmtA is then executed. 

Note: It's not required for there to be a statement such as stmtA after the completion of the if 

statement. 

 

The interpreter determines which statements are inside of the if clause based on indentation. For 

a statement to be consider inside of the if, it must be indented to the right from the if statement 

itself. All subsequent statements inside of the if must be indented to the same level. 

 

  



Sales Tax Example Revisited 

 

When buying most items, sales tax is added to the price. However, for some items, such as basic 

food, no sales tax is added. In this example we'll ask the user to enter the item price. Then we'll 

ask them if sales tax is to be assessed. If it is, then we'll ask the for percentage of sales tax and 

calculate the final price. 

 
# Arup Guha 

# 6/26/2012 

# Sales Tax Program Revisited - conditionally charges sales tax. 

 

def main(): 

 

    # Get the user input. 

    item_price = float(input("Please enter the price of your item.\n")) 

    is_taxed = input("Is your item taxed(yes,no)?\n") 

 

    # If the item is taxed, ask the sales tax percentage and add tax. 

    if is_taxed == "yes": 

        tax_rate = float(input("What is the sales tax percentage?\n")) 

        item_price = item_price + item_price*tax_rate/100 

 

    # Calculate the total price and round. 

    print("Your total cost is $",item_price,".",sep="") 

 

# Start the program. 

main() 

 

This program shows our first example of a Boolean expression. The Boolean expression in this 

program is: 

 

is_taxed == "yes" 

 

This is how we check to see if the variable is_taxed is equal to the string "yes". If it is, then this 

Boolean expression evaluates to true. Otherwise, it evaluates to false. 

 

Thus, if the user enters "yes", then they will be prompted to enter the percentage of sales tax. 

Then the variable item_price will be reassigned to include sales tax. If the user enters anything 

but "yes", then these two statements are skipped. Afterwards, the value of the variable item_price 

is printed. 

 

Let's take a look of running this program two separate times: 

 

 



>>>  

Please enter the price of your item. 

10.99 

Is your item taxed(yes,no)? 

no 

Your total cost is $10.99. 

 

After the first line, the picture in memory is as follows: 

     
After the second line, the picture in memory is: 

    
At this point, we approach the if statement. We compare the value of the variable is_taxed to the 

string literal "yes", and see that they are not equal. Note that when we type in strings we don't 

type in the double quotes, but when we denote string literals (string values instead of string 

variables) inside of our programs, we denote them with either matching double quotes or 

matching single quotes, as was previously discussed in the section about the print statement. 

 

Since this if statement evaluates to false, the following statements that are indented get skipped. 

The next statement that runs is: 

 

print("Your total cost is $",item_price,".",sep="") 

 

Since the value of the variable item_price is 10.99 at this point in time, this is what gets printed 

for the total cost. 

 

Now, consider the following execution of the program: 

 

>>> 

Please enter the price of your item. 

10.99 

Is your item taxed(yes,no)? 

yes 

What is the sales tax percentage? 

6.5 

Your total cost is $11.70435. 

 

 



The picture for this execution after the first two lines of code is: 

 

 
At this point, when we evaluate the Boolean expression in the if statement, we find that it's true 

since the variable is_taxed stores the string "yes". Then we go ahead and execute the following 

statement: 

 

tax_rate = float(input("What is the sales tax percentage?\n")) 

 

After this statement is executed, our picture of memory is as follows: 

 

 
Then we execute the following statement in the if: 

 

item_price = item_price + item_price*tax_rate/100 

 

item_price currently evaluates to 10.99 while item_price*tax_rate/100 is equals to .71435. 

Adding these, we evaluate the right-hand side of the assignment statement to equal 11.70435, 

thus our picture in memory AFTER this statement is: 

 

 
 

One of the basic building blocks of a Boolean expression is a relational operator. Here are the six 

relational operators and their meanings: 

 

Relational Operator Meaning 

== Equal to 

!= Not equal to 

> Greater than 

>= Greater than or equal to 

< Less than 

<= Less than or equal to 

 

Thus, in this Boolean expression we are checking to see IF the variable is_taxed has the value 

"yes". Notice that checking for equality uses two equal signs instead of one. This is because one 



equal sign already has a well-defined meaning: the assignment operator. Assigning a variable 

changes its value while checking for equality between two expressions doesn't change the value 

of any of the variables involved. 

 

Formatting Decimal Output to a Specific Number of Places 

 

In our previous examples, when we printed out real numbers, they printed out to many decimal 

places. Python uses a method similar to the language C to format real numbers to a fixed number 

of decimals. The syntax is strange and uses that percent sign (%), which we use for mod, in a 

different way. The expression that evaluates to a variable rounded to two decimal places is: 

 

"%.2f"%var 

 

where var is the variable to round. Here is an application of this syntax to displaying the item 

price rounded: 

 

print("Your total cost is $", "%.2f"%item_price, ".",sep="") 

 

If you want a different number of decimal places displayed, just change the 2 in the format 

string. (Note: The f in that set of double quotes indicates float and the .2 indicates to print out 

two digits after the decimal.) 

 

  



2.2 if Statement with else Clause 

 

In the previous example, if the item was taxed, we wanted to carry out an action, but if it wasn't 

we simply wanted to skip that action. In many cases however, if some condition is true, we want 

to execute one set of statements, but if it's false, we want to execute a separate set of statements. 

 

 
The basic syntax for this type of situation is as follows: 

 

if <Boolean Expression>: 

    stmt1a 

    stmt2a 

    ... 

    stmtna 

else: 

    stmt1b 

    stmt2b 

    ... 

    stmtmb 

stmtA 

 

The basic flow of control here is that we first evaluate the Boolean expression. If it's true, we 

complete statements stmt1a through stmtna and then continue to stmtA. Alternatively, if the 

Boolean expression is false, skip stmt1a through stmtna, but do execute statements stmt1b 

through stmtmb, and then continue to stmtA. 

 

 

 



Let's take a look at a couple examples that utilize this component of the if statement. 

 

Work Example 

 

Consider a job with flexible hours where you must spend a certain number of hours a week. 

During the week if you've exceeded that number, let's say you have to take the excess hours as 

vacation in future weeks. Alternatively, if you haven't exceeded that number, you'll have to work 

the remainder of the hours. In this program, we will ask the user to enter the number of hours 

they are supposed to work a week and how many she's worked thus far. Then, our program will 

print the appropriate output, asking the user to either work more hours, or take vacation. 

 
# Arup Guha 

# 7/2/2012 

# Example of a Basic if-else statment - determines if you need to 

# work more or if you need to take vacation time. 

 

def main(): 

 

    work_week = int(input("How many hours are you supposed to work?\n")) 

    this_week = int(input("How many hours have you worked this week?\n")) 

 

    # You've worked enough! 

    if this_week > work_week: 

        print("You must take",this_week-work_week,"hours of vacation.") 

 

    # Need to put in some more hours!!! 

    else: 

        print("You must still work",work_week-this_week,"hours this week.") 

 

main() 

 

Now, in the case that the Boolean expression is true, we print out the vacation hours. 

Alternatively, we print out the hours left to work. Incidentally, what happens if you've worked 

the exact correct number of hours? 

 

 

Quadratic Equation Example 

 

A common formula taught in Algebra I is the quadratic formula. However, sometimes this 

formula leads to "impossible" roots, which we later learn are "complex." In this program, given 

the coefficients of a quadratic equation from the user, if the roots are real, we will print them out. 

If they are not, we'll print out an error message. 

 



The quadratic formula is as follows:   
          

  
. This equation has to real roots so long as 

what is under the square root sign is non-negative. This leads to the following program: 

 
# Arup Guha 

# 7/2/2012 

# Quadratic Equation Solver 

 
def main(): 

 

    # Get user input. 

    a = float(input("Please enter a from your quadratic equation.\n")) 

    b = float(input("Please enter b from your quadratic equation.\n")) 

    c = float(input("Please enter c from your quadratic equation.\n")) 

 

    # Calculate the discriminant. 

    disc = b**2 - 4*a*c 

 

    # Deal with real roots. 

    if disc >= 0: 

 

        x1 = (-b + disc**.5)/(2*a) 

        x2 = (-b - disc**.5)/(2*a) 

 

        print("Your roots are ",x1," and ",x2,".", sep="") 

 

    # Error message for complex roots. 

    else: 

 

        print("Sorry, your roots are complex.") 

 

main() 

 

 

elif clause 

 

In the work week example, if the user worked the exact correct number of hours, our program 

would print the following message: 

 

You must still work 0 hours this week. 

 

While this is technically accurate, the tone of this message is a bit misleading. It would be nice if 

we had a third "option" to print out in this special equal case. 

 



Luckily, python gives us the facility to check for 3 or even more different options and choose at 

most one of them. This is through the elif branch of the if statement. elif is short for "else if." 

The general syntax of an if statement with one of these branches is as follows: 

 

if <Boolean Expression 1>: 

    stmt1a 

    ... 

    stmtna 

elif <Boolean Expression 2>: 

    stmt1b 

    ... 

    stmtmb 

else: 

    stmt1c 

    ... 

    stmtpc 

stmtA 

 

This works as follows: We first check the first Boolean expression. If it's true, we do stmt1a 

through stmtna, and then skip to stmtA. Alternatively, if this is false, we then check the second 

Boolean expression. If this one's true, then we execute stmt1b thorugh stmtmb and then skip to 

stmtA. Finally, if the second Boolean expression is also false, we go to the else clause and 

execute statemnts stmt1c through stmtpc and then move onto stmtA. 

 

Thus, we can edit the if statement in our work program as follows: 

 
    # You've worked enough! 

    if this_week > work_week: 

        print("You must take",this_week-work_week,"hours of vacation.") 

 

    # Correct hours worked 

    elif this_week == work_week: 

        print("Perfect, your done for work for the week!") 

 

    # Need to put in some more hours!!! 

    else: 

        print("You must still work",work_week-this_week,"hours this week.") 

 

  



Grade Example 

 

A very common example given to illustrate an if statement with several clauses is a program that 

prints out the grade a student should get based on the percentage they earned in a class. In this 

example, we'll use the typical A (90-100), B (80-89), C(70-79), D(60-69) and F (0-59) 

breakdown. 

 
def main(): 

 

    perc = int(input("What is your percentage in class?\n")) 

 

    if perc >= 90: 

        print("You got an A!") 

    elif perc >= 80: 

        print("You got a B!") 

    elif perc >= 70: 

        print("You got a C.") 

    elif perc >= 60: 

        print("You got a D.") 

    else: 

        print("Sorry, you got a F.") 

 

main() 

 

Notice that we only need to check one condition for each letter grade since the order in which 

they are checked. All grades 90 or higher are "caught" by the first clause, so if the second clause 

(elif perc >= 80) is ever evaluated, then we know that perc must be less than 90. Thus, if this 

boolean expession is true, it follows that perc is in greater than or equal to 80 AND less than 90. 

Continuing this logic, each of the first four clauses properly maps to their corresponding letter 

ranges. The only way the else clause executes is if perc is less than 60. 

 

To note that the order here is important, consider what would happen with the following if 

statement: 

 
    if perc >= 70: 

        print("You got an C.") 

    elif perc >= 90: 

        print("You got a A!") 

    elif perc >= 80: 

        print("You got a B!") 

    elif perc >= 60: 

        print("You got a D.") 

    else: 

        print("Sorry, you got a F.") 

 

What would this code segment print out if perc equals 95 right before it? Or 83? Will this code 

segment ever print out "A" or "B"? 



 

Use of Boolean Variables 

 

In addition to checking simple relationships between arithmetic expressions for truth, we can use 

variables that simply equal True or False to control our if statements. Consider a situation where 

you students are eligible for a scholarship if they either have a GPA of at least 3.5 or have an 

SAT scoore of at least 1800 (out of 2400). One way to solve the problem would be as follows: 

 
def main(): 

 

    eligible = False 

    gpa = float(input("What is your GPA?\n")) 

    sat = int(input("What is your SAT score?\n")) 

     

    if gpa >= 3.5: 

        eligible = True 

    if sat >= 1800: 

        eligible = True 

 

    if eligible: 

        print("You are eligible for the scholarship.") 

    else: 

        print("Sorry, you aren't eligible for the scholarship.") 

 

main() 

 

 

Our strategy here is to initialize our Boolean variable eligible to False, indicating that the user 

isn't currently eligible for the scholarship. In python, we indicate the literal value of false with 

the word false with the first letter capitalized. The value ISN'T a string, so no quotes appear 

around it. Similarly, the literal value true is indicated with the first letter of the word being 

capital. 

 

Once we read in the user input, there are two ways in which the user can become eligible for the 

scholarship. We check both using separate if statements, and in both cases, change our variable 

eligible to True. If neither of these if statements trigger, then the user is not eligible for the 

scholarship. Note that the two if statements may be written as an a single if-elif statement and 

still work properly. (As previously mentioned, almost always, there is more than one method to 

solve a problem correctly.) 

 

Complex Boolean Expressions 

 

Some may look at the previous example and complain that having to use two separate if 

statements seems inefficient. A natural followup question would be: can we check multiple 

conditions in a single Boolean expression? Python (and most other programming languages) 

allows this. In particular, we can evaluate the result of checking two Boolean conditions in two 

ways: 



 

(1) the "and" of two Boolean expressions 

(2) the "or" of two Boolean expressions 

 

The following two tables (often called truth tables) illustrate the meaning of "and" and "or", 

which correspond naturally to their English meanings: 

 

Operand #1 Operand #2  Result (or) 

False False False 

False True True 

True False True 

True True True 

  

 

Namely, the Boolean expression resulting by composing the "or" of two given Boolean 

expressions is True as long as at least one of the two given Boolean expressions is true. Note that 

it's perfectly permissible for both to be true. (In our scholarship example, we are still eligible if 

we have a GPA of 3.7 and an SAT score of 1900.)  

 

Here is the truth table for the Boolean operator "and": 

 

 

Operand #1 Operand #2  Result (and) 

False False False 

False True False 

True False False 

True True True 

  

Using the Boolean operator "or", we can shorten our program as follows: 

 
def main(): 

 

    gpa = float(input("What is your GPA?\n")) 

    sat = int(input("What is your SAT score?\n")) 

 

    if gpa >= 3.5 or sat >= 1800: 

        print("You are eligible for the scholarship.") 

    else: 

        print("Sorry, you aren't eligible for the scholarship.") 

 

main() 

 

 

  



Example Using and 

 

One of the classic problems used to illustrate complicated Boolean logic is the leap year 

problem. Everyone knows that all leap years are divisible by 4. However, some may not know 

that not all years divisible by 4 are leap years. In particular, of the years divisible by 4, those 

divisible by 100, but not 400 are NOT leap years. Thus, the years 1700, 1800 and 1900 were 

NOT leap years, but 2000, since it's divisible by both 100 and 400, was. 

 

In the following program we ask the user to enter a year and we print out whether or not it is/was 

a leap year. 

 
def main(): 

 

    year = int(input("What year would you like to check?\n")) 

 

    leapYear = True 

 

    if year%4 != 0: 

        leapYear = False 

    elif year%100 == 0 and year%400 != 0: 

        leapYear = False 

 

    if leapYear: 

        print(year,"is a leap year.") 

    else: 

        print(year,"is not a leap year.") 

 

main() 

 

 

We make use of the and operator by checking for the exceptions to the divisible by 4 rule. The 

general strategy taken by this program is to assume that a given year is a leap year and change 

our answer to false if the year doesn't pass one of the tests. Both of the conditions listed must be 

true in order for the year in question to be marked as a non-leap year. 

 

A great deal of logic in programming involves checking whether or not multiple conditions are 

True or False, using various combinations of or's and and's. Further examples utilizing these 

operators will be shown throughout this textbook. 

 

 

  



Short-Circuiting 

 

A short circuit in electronics is generally not a good thing. Luckily, in programming, the term 

refers to something different without catastrophic consequences. Some complex Boolean 

expressions can be evaluated without looking at both operands. Consider the following code 

segment: 

 
dx = 0 

dy = 5 

 

if dx != 0 and dy/dx > 0: 

    print("The slope is positive.") 

 

In this situation, we see that dx is zero, so the first part of our Boolean expression is false. But 

we also know that in order for the and of two expressions to be True, both have to be true. Thus, 

without ever checking the second Boolean expression, we can ascertain that the entire expression 

will be False. The Python interpreter is smart enough to do this logic! Thus, it never bothers to 

evaluate dy/dx > 0. This is short-circuiting in programming. Any time the compiler can 

determine a definitive value to a Boolean expression, it never checks the rest of it.  

 

This is a good thing because if we had tried to divide 5 by 0, then we would get a division by 

zero error. In fact, the programmers purposefully count on short-circuiting while writing their 

code to avoid many errors like this one. (If the interpreter didn't use short-circuiting, the if 

statement would have to be split into two that checked the two conditions separately, checking 

the second only when the first was true. 

 

Another situation where short-circuiting applies with a complex statement is as follows: 

 
dx = 3 

dy = 5 

 

if dx > 0 or dy > 0: 

    print("Not in the third quadrant.") 

 

Here, after checking that the first Boolean expression is True, we can ascertain that the whole 

expression is True and have no need to check the value of dy. (Note that in this case, nothing bad 

would have happened had we checked the expression.) 

 
 

  



Special Cases 

 

Python goes to great lengths to help programmers avoid errors using the if statement as 

compared to the if statement in other languages. The following works code segment works 

exactly as the programmer intends: 

 
age = int(input("How old are you?\n")) 

 

if 15 < age < 25: 

    print("You may drive, but not rent a car.") 

 

The programmer's intent here is for the if statement to trigger as true if the variable age is in 

between 16 and 24, inclusive. In other languages, this expression does not work as intended. 

 

A common mistake many programmers make is to mistakenly use one equal sign instead  of two. 

Luckily, this results in a syntax error in Python and the programmer is alerted before her 

program can run. Consider the following code segment: 

 
age = int(input("How old are you?\n")) 

 

if age = 16: 

    print("Woohoo, time to drive!!!") 

When attempting to interpret this code segment, Python's interpreter responds with: 

 
SyntaxError: invalid syntax 

 

and highlights the offending single equal sign in red. At this point, hopefully the programmer 

realizes her error. 
         

2.3 random class 

 

Computer programs, particularly games, are much more fun if there's some randomness 

involved. Unfortunately, we have no reliable way of producing truly random numbers. However, 

most programming languages, including Python, include a pseudorandom number generator. 

These generators use a set of steps to generate numbers that appear random. Thus, if you or I 

knew the exact set of steps the generator was using, we could reproduce every numer the 

generator created. However, to the casual observer, the numbers produced would appear random. 

Random numbers in programs allow us to play games with some uncertainty (think dice) and 

allow us to simulate real life events that have some uncertainty (think stock market). Python 

makes using random numbers fairly easy. In order to do so, we must do the following import: 

 
import random 

 

At the beginning of our program (preferably in main), we must seed our random number 

generator as follows: 

 
random.seed() 



For now, the details of this function call are not important. Simply include this as one of the first 

lines of your main function in any program that uses random numbers. 

 

From this point on, if you want a random number selected between two integers a and b, 

inclusive, simply make the following function call: 

 
random.randint(a, b) 

 

Since this function call returns a value, like a majority of the math functions, we must call it as 

part of a greater line of code, typically storing its return value in a variable. 

 

The following program will use the random number generator to generate one random number in 

between 1 and 100, and allow two players to guess the number. The winner will be the player 

who comes closest to the number without guessing too high. If both players guess too high, or if 

both players guess the same number, the outcome will be a tie. In all other cases there will be a 

unique winner. 

 

Though this example generates only one random number, a program is allowed to generate many 

random numbers, if necessary. In these cases, we still only seed the random number generator 

only once. 

 
import random 

 

def main(): 

 

    random.seed() 

 

    secretNum = random.randint(1,100) 

 

    # Get the user input. 

    guess1 = int(input("Player 1, enter your guess(1-100).\n")) 

    guess2 = int(input("Player 2, enter your guess(1-100).\n")) 

 

    # Calculate how close both players are. 

    diff1 = secretNum - guess1 

    diff2 = secretNum - guess2 

 

    print("The correct number was",secretNum) 

 

    # Check all of the cases! 

    if diff1 < 0 and diff2 < 0: 

        print("Both players bust. The game is a tie.") 

    elif diff2 < 0: 

        print("Player 1 wins since Player 2 busted.") 

    elif diff1 < 0: 

        print("Player 2 wins since Player 1 busted.") 

    elif diff1 < diff2: 

        print("Player 1 is closer to the correct number and wins!") 

    elif diff1 == diff2: 



        print("Both players guessed the same number and tie.") 

    else: 

        print("Player 2 is closer to the correct number and wins!") 

 

main() 

 

 

In this program, we generate a single random number in between 1 and 100, inclusive and store 

it in secretNum. After that, we use the if statement to separate out several different cases to 

determine which of the two players has won. As this example illustrates, a problem that seems so 

simple to us intuitively can have a rather complex, detailed solution. Though our brain can carry 

out this "Price is Right" logic effortlessly, we see that when formalized, there are several 

conditions that need to be checked. 

 

The following section will contain an example that utilizes multiple random numbers in the same 

program. 

 

 

2.4 Writing Our Own Functions 

 

Motivation for User-Defined Functions 

 

Up until now, we've only called functions that Python has provided for us. Some examples of the 

functions we've used are: print, input, int, float, sqrt, round and randint. Python and nearly all 

programming languages allow users to define their own functions. 

Simply put, a function is a mini-program that completes a specified task. For example, the sqrt 

function takes its input value and returns its square root. The randint function takes in a low 

bound and a high bound and selects a random integer within the specified range. The ceil 

function finds the smallest integer greater than or equal to its input value and returns it. We can 

define functions to do any sort of task that we would like or to make any sort of calculation we 

want. Once we define a function, we can use it over and over again. 

 

  



Function Example 

 

Consider a game where two people both roll a pair of regular dice and the first person wins if 

their roll sums to a higher number than the other person. (Thus, if both people roll the same 

value, then the second person wins.) In this program, a task we need to repeat is rolling a pair of 

dice. First the code will be shown in its entirety and then an explanation will be given for how it 

works: 

 
import random 

 

def main(): 

 

    random.seed() 

 

    # Roll both pairs of dice. 

    score1 = rollPairDice() 

    score2 = rollPairDice() 

 

    print("Player 1 rolled a",score1,"and player 2 rolled a",score2) 

 

    # Print out the winner. 

    if score1 > score2: 

        print("Player 1, you win!") 

    else: 

        print("Player 2, you win!") 

 

def rollPairDice(): 

    return random.randint(1,6) + random.randint(1,6) 

 

main() 

 

 

We first define each of our functions. When we define our functions, they don't actually get 

interpreted. Rather, we are defining them so that when we call them later, the interpreter knows 

what the function calls mean. Thus, before we ever call main, both the function main and 

rollPairDice are defined. 

 

As we interpret main, we run across the call to rollPairDice. We then start executing the steps of 

this function. This function has a single statement, which, itself, contains a couple function calls. 

The first randint call will generate a random integer in between 1 and 6 and return it. The second 

randint call will do the same thing. Note that this second call may very well return a different 

number than the first call. The function adds these two values and then returns this sum. The 

return statement is a special statement designated for functions. The return statement indicates 

that the function is ending and that it is returning a value to the function that called it. 

 

In this case, the rollPairDice function returns a value to main. This value is then stored in the 

variable score1. We repeat this process, calling the rollPairDice function a second time. Once it 

finishes, the value it returns gets stored in score2. Note that any time a function returns a value, 

the function that calls it should store that value in a variable or use it in some way. 



 

Once these lines are done, the program proceeds as we'd expect, comparing the two variables and 

printing out the appropriate message. 

 

 

Function Example with Different-Sided Dice 

 

Though most games with dice have their users roll a pair of 6-sided dice, not all games are this 

way. We can make our function more general by allowing the user to determine the number of 

sides on each of the two dice. In order for this to occur, our function needs some information. It 

needs to know how many sides are on each die. This information is given to a function in its 

parameter list. A parameter list is a list of information the function needs to do its task. Here is 

our modified function definition: 

 
def rollPairDice(numSides): 

    return random.randint(1,numSides) + random.randint(1,numSides) 

 

Now, in order to call this function, we must put a number in the parentheses in between 

rollPairDice. Now, let's look at the modified program in full that accomplishes the same exact 

task as the previous program: 

 
import random 

 

def main(): 

 

    random.seed() 

 

    # Roll both pairs of dice. 

    score1 = rollPairDice(6) 

    score2 = rollPairDice(6) 

 

    print("Player 1 rolled a",score1,"and player 2 rolled a",score2) 

 

    # Print out the winner. 

    if score1 > score2: 

        print("Player 1, you win!") 

    else: 

        print("Player 2, you win!") 

 

def rollPairDice(numSides): 

    return random.randint(1,numSides) + random.randint(1,numSides) 

 

main() 

 

 

 

  



Extending Our Program 

 

Now that we have a more general function, we can use it to write a program that allows users to 

play this game with a pair of Dice with any number of sides: 

 
import random 

 

def main(): 

 

    random.seed() 

 

    # Get the number of sides on each die. 

    sides = int(input("How many sides are on each die?\n")) 

 

    # Roll both pairs of dice. 

    score1 = rollPairDice(sides) 

    score2 = rollPairDice(sides) 

 

    print("Player 1 rolled a",score1,"and player 2 rolled a",score2) 

 

    # Print out the winner. 

    if score1 > score2: 

        print("Player 1, you win!") 

    else: 

        print("Player 2, you win!") 

 

# Returns the sum of rolling two dice labeled 1 to numSides. 

def rollPairDice(numSides): 

    return random.randint(1,numSides) + random.randint(1,numSides) 

 

main() 

 

 

In this example, we can see the mechanics of functions working. After the second line of code in 

main, the picture of memory in main is as follows, assuming that the user enters 20 for the 

number of sides on a die: 

      
Now, consider what occurs when we make the following function call: 

 
score1 = rollPairDice(sides) 

 

  



Before the rollPairDice function runs, the first task is assigning each parameter to the appropriate 

value. Each function gets its own memory for each time it runs. Thus, our picture for the function 

is as follows: 

      
Essentially, what has happened is that the value of sides in main (20), has been copied into the 

box for numSides in the function rollPairDice. From here, we run the function, which itself calls 

the randint function, which will return a random integer in between 1 and 20, inclusive. This 

function gets called a second time and the second random integer returned is added to the first, 

and then this sum is returned to main and stored in score1. 

 

This whole process is repeated again. For our purposes, we call the rollPairDice function a 

second time with the same parameter (sides), but there's no reason why we couldn't call it with a 

different parameter. 

 

Example of a void Function 

 

Though many functions return values, it's not required for a function to return a value. Some 

functions may simply carry out a specified task and have no need to return any value to the 

function that called it. Consider the following function that prints out a given string a certain 

number of times: 

 
def printString(myStr, n): 

    print(myStr*n, sep="", end="") 

 

We can use this function to print out a simple design: 

 
def main(): 

 

    printString(' ', 2) 

    printString('*', 1) 

    printString('\n',1) 

    printString(' ', 1) 

    printString('*', 3) 

    printString('\n',1) 

    printString('*', 5) 

    printString('\n',1) 

    printString(' ', 1) 

    printString('*', 3) 

    printString('\n',1) 

    printString(' ', 2) 

    printString('*', 1) 

    printString('\n',1) 

     

main() 



 

Note: It's clear that for this particular example, the use of the function has NOT eased our task. 

Rather, this example is being used to illustrate how a void function (a function that doesn't return 

anything) works. In particular, it's just as easy to directly call the print function in each of these 

instances instead of going through our defined printString function. One thing to note is that the 

printString function is quite flexible. We can give it any string we want, and any number of 

repetitions. On the first function call, our picture of memory in the printString function is as 

follows: 

     
This will then print out two space characters. In the following function call, the picture of 

memory in the printString function is as follows: 

     
In this manner, we can use the printString function in various ways to get our desired output 

result: 

 
  * 

 *** 

***** 

 *** 

  * 

 

 

2.5 Blackjack Example 

 

Function Reusability 

 

One advantage to writing functions is that once a function is written, if it’s written in a general 

manner, like the rollPairDice function, it can be used multiple times. There are two clear benefits 

to using functions in this context. One benefit is that programs with functions that are reused 

tend to be shorter to write. Secondly, and more importantly, if we write a function and find all 

the errors in it, then we can call that function many times and be fairly confident that if our 

program has errors, the errors aren’t in the function. Without the function, different errors could 

creep up in each “copy” of the code that essentially does the same thing. 

 

Blackjack Program 

 

In the following example, we will simulate a simple game of blackjack with some modifications, 

based on the amount of Python we currently know. In blackjack, each player is initially dealt two 

cards. The value of each card ranges from 2 to 11. Number cards are worth their value, face 



cards are worth 10 points and aces can be worth either 1 or 11 points. In this version, we’ll make 

all aces worth 11 points to simplify the simulation. In regular blackjack, a player may deal as 

many extra cards as she wants. The goal of the game is to get as close to 21 points as possible, 

without going over. The winner is whoever gets the most points without exceeding 21. In a 

casino, there can be multiple winners – anyone who beats the dealer wins in a casino. But, in our 

version of the game, there will be two players. If both exceed 21 or both get the same score less 

than or equal to 21, we will declare no winner. Otherwise, whoever has the greatest score less 

than or equal to 21 will be the winner. Since we don’t yet know how to repeat a set of statements 

many times, we will allow each player to only receive one extra card, if they chose. 

 

We will employ four functions in our implementation: 

 

1) getCards(n) – returns the sum of n cards, where n is either 1 or 2. 

 

2) oneCard() – returns the score of one randomly selected card 

 

3) wantCard(name, curscore) – returns True if name, who currently has curscore points wants an 

extra card, False otherwise. 

 

4) printOutcome(name1, score1, name2, score2) – prints the outcome of a game between name1 

and name2 where they’ve scored score1 and score2 points, respectively. 

 

The most difficult part of seeing this example in its entirety is conceiving how it was designed. 

The first three functions return values while the last one returns nothing. Each of the four 

functions takes in different pieces of information. It takes time to get comfortable designing 

functions in programs and putting everything together. At this point, don’t be concerned if you 

don’t feel that you could design a program this complex. Designing programs that use functions 

effectively takes time and students gradually get better at the process. The goal of this program is 

to provide a more complicated example that clearly exemplifies some of the benefits of functions 

that aren’t clear from smaller examples. (As an exercise, try rewriting this program all in main, 

and the benefit of functions will be crystal clear!) Download the example and run it a few times. 

Though an explanation will be given here, try to figure out how each function communicates 

with one another. There are two lines of communication: input a function receives to do its job 

and a return value. Functions receive input in the form of parameters. This is the name of the 

items inside the parentheses in a function call. When the function is done, it potentially returns a 

value to the function that called it. The receiving function is then responsible for using this value 

as it sees fit. 

 

For example, the getCards function takes in an integer. This integer tells it how many cards to 

give the player. The function’s job however, is to simply return the total score of these cards. The 

specific information about the cards themselves is actually lost. (If you run the program, you 

realize that you never find out which specific cards you hold.) 

 

The oneCard function has a more simple task: It returns the value of a single random card. As 

you might imagine, once this function is written, we can easily write the getCards function by 

calling the oneCard function once or twice, as is necessary. The nature of the getCards function 



is general enough that we can call it for the initial deal OR to obtain the extra card. Let’s look at 

both of these functions: 

 
# Pre-condition: n must be either 1 or 2. 

def getCards(n): 

 

    # We must have at least one card. 

    total = oneCard() 

 

    # Add a second card, if necessary. 

    if n == 2: 

        total = total + oneCard() 

 

    return total 

 

# Returns a random blackjack card value, assuming 

# all aces are worth 11 points. 

def oneCard(): 

 

    card = random.randint(2, 14) 

 

    # Numeric cards 

    if card <= 10: 

        return card 

 

    # Face cards 

    elif card <= 13: 

        return 10 

 

    # Aces! 

    else: 

        return 11 

 

 

Notice that in the oneCard function, we simulate a random card by a random number in a 13 

value range, to correspond to the 13 kinds of cards. Then, we assign each number to a specific 

kind of card. It’s easiest to assign 2 – 10 to the same values, 11 – 13 to the face cards, and 14 to 

an Ace. It would have been equally valid to generate a random number in between 1 and 13, 

inclusive and assign Aces to 1. In fact, any system where each kind has a 1/13 chance of being 

chosen would be valid. Once we make our selection, we calculate the appropriate number of 

points and return it! 

 

In the getCards function, we call the oneCard function once, and then use an if statement to 

check to see if we should call it again. 

 

Let’s take a look at the program in its entirety: 

  



# Arup Guha 

# 8/13/2012 

# Simplified Blackjack Example with Functions 

 

import random 

 

def main(): 

 

    name1 = input("Player #1, what is your name?\n") 

    name2 = input("Player #2, what is your name?\n") 

 

    score1 = getCards(2) 

    score2 = getCards(2) 

 

    if wantCard(name1, score1): 

        score1 = score1 + getCards(1) 

 

    if wantCard(name2, score2): 

        score2 = score2 + getCards(1) 

 

    printOutcome(name1, score1, name2, score2) 

 

# Pre-condition: n must be either 1 or 2. 

def getCards(n): 

 

    # We must have at least one card. 

    total = oneCard() 

 

    # Add a second card, if necessary. 

    if n == 2: 

        total = total + oneCard() 

 

    return total 

 

# Returns a random blackjack card value, assuming 

# all aces are worth 11 points. 

def oneCard(): 

 

    card = random.randint(2, 14) 

 

    # Numeric cards 

    if card <= 10: 

        return card 

 

    # Face cards 

    elif card <= 13: 

        return 10 

 

    # Aces! 

    else: 

        return 11 



# Returns true iff name wants an extra card. 

def wantCard(name, curscore): 

 

    # Get the user's answer. 

    print(name,", your score is currently ",curscore, sep="") 

    answer = input("Would you like another card(yes/no)?\n") 

 

    # Return accordingly. 

    if answer == "yes": 

        return True 

    else: 

        return False 

 

# Prints the outcome of a game between name1 and name2 

# where they've scored score1 and score2, respectively. 

def printOutcome(name1, score1, name2, score2): 

 

    # Print final scores. 

    print(name1,", your score is ",score1,".", sep="") 

    print(name2,", your score is ",score2,".", sep="") 

 

    # Lots of cases here. Go through each. 

    if score1 > 21 and score2 > 21: 

        print("Sorry, no one wins, both players busted.") 

    elif score2 > 21: 

        print(name1,"wins because", name2, "busted.") 

    elif score1 > 21: 

        print(name2,"wins because", name1,"busted.") 

    elif score1 > score2: 

        print(name1,"wins with a higher score than",name2) 

    elif score2 > score1: 

        print(name2,"wins with a higher score than",name1) 

    else: 

        print("Both",name1,"and",name2,"tie.") 

 

         

# Call main! 

main() 

  



2.6 Practice Programs 

 

1) Write a program that does temperature conversion from either Fahrenheit to Celsius, or the 

other way around. Your program should first prompt the user for which type of conversion they 

want to do. Then your program should prompt the user for the temperature they want to convert. 

Finally, your program should output the proper converted temperature. The formula for 

conversion from Celsius to Fahrenheit is: 

 

F = 1.8*C + 32 

 

2) Debbie likes numbers that have the same tens digit and units digit. For example, Debbie likes 

133 and 812355, but she does not like 137 or 4. Write a program that asks the user for a number 

and then prints out whether or not Debbie likes the number. 

 

3) Write a program that prompts the user for 2 pieces of information: (1) age, (2) amt. of cash 

they have. Based upon these inputs, your program should produce one of the four outputs below 

for the given situations: 

 

Situation Output 

A<21, M<100 "You have some time before you need more money." 

A<21, M>=100 "You have got it made!" 

A>=21, M<100 "You need to get a job!" 

A>=21, M>=100 "You are right on track." 

 

4) Scholarships are given based on students' SAT score and GPA. In particular, based on these 

two items, a composite score is calculated with the following formula: 

 

 (SAT score)/1000 + GPA 

 

(Note: The formula refers to real number division.) The amount of scholarship money awarded is 

based on this composite score as follows: 

 

Composite Score (s) Scholarship Amount 

4 < s < 5 $1000 

5 ≤ s < 6 $2500 

s ≥ 6 $5000 

 

Write a program that asks the user for their SAT score and GPA and prints out the amount of 

scholarship money they receive. 

 



5) Write a guessing game for two players where both players guess a number in between 1 and a 

100. Your program should generate the "secret number" randomly. The winner is determined as 

follows: 

 

If both players guess the same number, the first player wins. 

If one player's guess is closer than the other player, then that player wins. 

If both players' guesses are off by the same value, then the player that guessed the lower number 

wins. 

 

For example, if the secret number is 71 and the two players guesses are 64 and 77, then the 

player that guesses 77 wins, since 77 - 71 = 6 and 71 - 64 = 7. Alternatively, if the secret number 

is 45 and the two players guesses are 36 and 54, then the player that guesses 36 wins, since 45 - 

36 = 9, 54 - 45 = 9, and 36 is less than 54. 

 

6) Sales clerks at "Computers R Us" get paid a bonus for their sales. In particular, they get $10 

for each of the first 10 computers they sell in a month, $20 for the next 10 computers they sell in 

a month, and $40 for each computer thereafter. For example, if a clerk sells 15 computers, they 

make $100 for the first 10 and $100 for the next 5 for a total of $200. Alternatively, if a clerk 

sells 22 computers, they make $380 in bonuses. Write a program that asks the user how many 

computers they sold and prints out their bonus for the month. 

 

7) Write a program that calculates the number of pitchers of lemonade that can be made with 

certain raw materials. Ask the user to enter the number of teaspoons of sugar and number of 

lemons necessary to make a pitcher of lemonade. Follow this by asking the user the total number 

of teaspoons of sugar and number of lemons that are available to make lemonade. Use this 

information to calculate the number of full pitchers of lemonade that can be made and also print 

out the leftover ingredients (number of teaspoons of sugar and lemons) after those pitchers have 

been made. 

 

  



8) Two competing companies offer different bulk buying plans for buying boxes of cereal. The 

first 100 boxes are at one price point, the next 1000 are at a second price point and all subsequent 

boxes are at a third price point. Ask the user to enter the three price points for two companies as 

well as the number of boxes they desire to buy. Your program should print out which company 

they should go with and how much their purchase will cost. If both companies will provide the 

same price, you may choose either. Consider the price points of two companies shown below: 

 

Company Price for first 100 Price for next 1000 Price for rest 

1 $2.99 $1.99 $1.50 

2 $2.50 $2.25 $1.75 

 

If we buy 2000 boxes of cereal from company 1, we spend 100*$2.99 + 1000*$1.99 + 

900*$1.50 = $3639. If we buy the same boxes from company 2, we spend 100*$2.50 + 

1000*$2.25 + 900*$1.75 = $4075. Thus, in this case, we should go with company 1. 

 

9) On planet C, leap years occur on every year divisible by 7, except for years that are divisible 

by either 35 or 77. (Thus, the first ten leap years after 0 on planet C are: 7, 14, 21, 28, 42, 49, 56, 

63, 84 and 91.) Write a program that prompts the user to enter a year (positive integer) and prints 

out whether or not this year is a leap year on planet C. 

 

10) Write a program that determines whether or not Anna and Bob were at the restaurant at the 

same time. Ask the user when Anna and Bob arrived at and left the restaurant, respectively. (The 

user should answer in number of minutes after midnight, and assume that both arrived and left on 

the same day.) Determine whether or not Anna and Bob were at the restaurant at the same time, 

and if so, for how many minutes they overlapped. For example, if Anna arrived at 720 minutes 

after midnight and left 800 minutes after midnight and Bob arrived at 600 minutes after midnight 

and left 740 minutes after midnight, they were at the restaurant together for 20 minutes. (Note: If 

Bob leaves at the same time Anna arrives, then they were not at the restaurant at the same time.) 

 

 


