
pyGame Lecture #6
(Examples: fruitgame, dotgame)

MULTIFILE PROGRAMS IN PYGAME

I. Why Do We Need a Program Split Among Multiple Files?

It's extremely difficult for a programmer to keep track in her head all of the variables

and functions in a file that is thousands of lines long. In order for humans to reliably

maintain and upgrade software, it's necessary that the person editing a piece of code

only have to keep track of a relatively small number of things all at once.

(Psychologists have shown that most humans can only keep track of 3-7 things in

their short-term memory at once. This is why most of us can manage to remember a

few phone numbers, but the average person has some difficulty remembering their

credit card numbers.) Typically, in a python program, when editing a single line of

code, in theory any other line of code in the same file may directly or indirectly affect

that line. Thus, when tracking down errors, one typically might have to search all

around a particular file.

One innovation that helped reduce this complexity was functions. When you are

writing code inside of a function, if you declare a variable inside of the function, it

only exists within that function and won't conflict with a variable outside of the

function. In addition to any variables you may declare in a function, you can only use

the formal parameters (the items written in the parentheses at the top of the function)

and any global variables (defined in the file not within any function) in that function.

This helps reduce the total number of things you must keep track of, especially if one

limits the number of global variables.

However, after a while, even writing a program wiith many functions in one file gets

tedious. Imagine having to scroll from line 1327 to line 4434 to track down a single

function call!!! Or having to remember where a particular function was written in a file

when the file has a hundred functions!!! It might take 10-15 minutes just to track

down where physically in the code the offending function might be.

Thus, the next level of abstraction that helps the programmer deal with complexity in

programs is splitting a program into multiple files.

The idea is as follows: in each file, you keep a small number of related functions and

constants. In one file you have your "main" program, which you actually run. From

that file, you directly or indirectly call all of the other functions, some of which may

reside in this main file and others which may reside in other files. If you split up your

files in a logical way, then based on what a function does, you'll quickly know which

file it's defined in. Once there, since the actual file is pretty small, you should be able

to find it quickly. This is the same idea behind organizing a bookshelf by placing all

books on the same subject on one shelf. You can think of each file in your program as

a "subject" and within that file you have multiple functions that fit within that subject.

In the main file, you call various functions that may be located in different files. The

organization by files allows for the programmer to focus on a smaller portion of code

when editing. It also allows for multiple programmers to work on the same code base

in parallel. It's this latter advantage that truly makes software more scalable.

II. The Mechanics of Splitting a Program into Multiple Files

The actual mechanics of splitting a program into multiple files isn't too difficult. If

you want one file to contain several variables and functions, put those variables and

function definitions in a separate file. In that file, import anything you need (pygame,

etc.) for the functions in that file. Now, if you want to call functions from this file

from a different file, first put an import statement in the second file. For example, if

the file fruitgame.py makes calls to functions in fruitfunc.py, then at the top of

fruitgame.py we write:

import fruitfunc

Then, when we want to call a function in fruitfunc.py that resides in fruitfunc.py we

write the function call as follows:

fruitfunc.move(fruit)

III. Example - Fruit Game

For Fruit Game, we want to move our functions over to a separate file. In addition,

trying to remember which index corresponds to which component of a fruit object is

quite error prone. Formally, a better way to solve this problem is to use classes and

objects, but due to the large learning curve of object oriented-programming, we'll

introduce the use of variables (meant to be constant) to make our implementation of

fruit objects with lists more readable. Here are the variables we'll declare:

SCREEN_W = 1000

SCREEN_H = 600

X = 0

Y = 1

DX = 2

DY = 3

F_ID = 4

Recall that F_ID represents is the index into the fruit list that represents which fruit is

being represented. Thus, in index 4 of the list of a single fruit, the value stored is

either 0, 1, 2 or 3, which correspond to apple, strawberry, kiwi and cherry,

respectively. With these declarations, here are the functions for the file fruitfunc.py

rewritten from the original fruitgame.py:

def move(items):

 for item in items:

 item[X] += item[DX]

 item[Y] += item[DY]

def removeUseless(items):

 total = 0

 for item in items:

 if item[Y] > SCREEN_H:

 items.remove(item)

 total += 1

 return total

def hit(f, mypos, pics):

 if mypos[X] < f[X] or mypos[Y] < f[Y]:

 return False

 if mypos[X] >= f[X] + pics[f[F_ID]].get_width():

 return False

 return mypos[Y] < f[Y] + pics[f[F_ID]].get_height()

Notice the enhanced readability of this code!

After looking at the main, one more function was added to this file. The act of

creating a new fruit took several lines of code and it's fairly easy to create a function

that returns a newly created fruit as follows:

def makeNewFruit():

 x = random.randint(1, SCREEN_W)

 which = random.randint(0,3)

 mydx = random.randint(-2, 2)

 mydy = random.randint(3, 8)

 return [x,0,mydx,mydy,which]

This is the entirety of the file fruitfunc.py except for the imports at the top of the file:

import random

import pygame, sys

from pygame.locals import *

The main file, fruitgame.py now doesn't need these functions, though we will end up

still including these variables in main again:

SCREEN_W = 1000

SCREEN_H = 600

X = 0

Y = 1

DX = 2

DY = 3

F_ID = 4

The reason for including these constants again is that if we only include them in

fruitfunc.py, then if we want to utilize them in fruitgame.py, then we would have to

type fruitfunc.X instead of X. Since this expression is simply going to be an

index into an array, lines of code that utilize these expressions will be extremely long.

Consider this line of code from fruitgame.py:

DISPLAYSURF.blit(fruitfunc.pics[item[F_ID]],(item[X], item[Y]))

If we didn't declare the variables in fruitgame.py, this line of code would be:

DISPLAYSURF.blit(fruitfunc.pics[item[fruitfunc.F_ID]],(item[fruitfunc.

X], item[fruitfunc.Y]))

This alternative is definitely harder to read than the former. The drawback of the

shorter version is that the variables are declared in two files. It's possible that these

variables could be defined inconsistently due to human error. This would be a bug

that is very difficult to track down. From a design perspective, it's best to have all of

these constant value defined in only one place, so if any of them are wrong, they are

wrong everywhere. And if someone wants to change one of these values, they only

have to be changed in one place.

Other than duplicating the constants in both files, the main file, fruitgame.py just

contains the main game loop. The key changes are that each function call has

"fruitfunc.", without the quotes in front of it. Here is the main game loop (top portion

of the file is skipped)

while True:

 for event in pygame.event.get():

 if event.type == QUIT:

 pygame.quit()

 sys.exit()

 if event.type == MOUSEBUTTONDOWN:

 if pygame.mouse.get_pressed()[0]:

 for f in fruit:

 if fruitfunc.hit(f, event.pos, fruitfunc.pics):

 score += pts[f[F_ID]]

 fruit.remove(f)

 if step%10 == 0:

 fruit.append(fruitfunc.makeNewFruit())

 DISPLAYSURF.fill(WHITE)

 for item in fruit:

 DISPLAYSURF.blit(fruitfunc.pics[item[F_ID]],(item[X],

item[Y]))

 pygame.display.update()

 fruitfunc.move(fruit)

 dropped += fruitfunc.removeUseless(fruit)

 if dropped > 20:

 print("Sorry, you have dropped more than 20 fruits.")

 print("The game is over.")

 print("Your score is",score)

 pygame.quit()

 sys.exit()

 clock.tick(30)

 step += 1

IV. Example - Dot Game, 2 Files

Now we will introduce a new example, the dot game, which is loosely based on the

web game agar.io. In the game, the player controls a dot. In the field of play there are

other dots. If the player's dot intersects with another dot which is smaller, then the

player "eats" that dot and the player's dot grows to equal the sum of areas of the two

dots. If the player's dot is equal in size or smaller to the other dot, then the player

loses. In this version, if the player goes off the screen, the player loses.

The initial version of this game was written all in one file. Then, two more versions

were created: one with two files and another with three files. Both of the latter

versions have strengths and weaknesses. The logic behind the game is largely similar

to the logic utilized in both the rain and fruitgame examples, so for these notes, rather

than explaining that logic in detail, we'll just focus on the design decisions in creating

the program in different files as well as the mechanics of doing so.

In the two file version, we move all of the relevant functions into a separate file,

dotfunctions.py. The main game loop is found in dotgame.py.

The variables used to index into the list for the dot objects are declared in both files.

These are as follows:

SCREEN_W = 1000

SCREEN_H = 600

DELTA_ME = 1

DELTA = 5

X = 0

Y = 1

DX = 2

DY = 3

R = 4

CLR = 5

LIME = pygame.Color(180,255,100)

PINK = pygame.Color(255,100,180)

WHITE = pygame.Color(0,0,0)

R represents the radius of the dot and CLR represents the color of the dot. In this

game pink is used for the player and lime is used for the rest of the dots. Remember

that R and CLR are just indexes into the list storing a single dot.

To make the code easier to write and make the main game loop shorter, more

functions were added to this file. Any function that helped deal with a single dot or a

set of dots is included in this file, a total of 9 functions:

def changeVel(item, addvelX, addvelY):

 item[DX] += addvelX

 item[DY] += addvelY

def moveItem(item):

 item[X] += item[DX]

 item[Y] += item[DY]

def move(items):

 for item in items:

 moveItem(item)

def removeUseless(items):

 for item in items:

 if item[Y] > SCREEN_H or item[Y] < 0:

 items.remove(item)

 if item[X] > SCREEN_W or item[X] < 0:

 items.remove(item)

def isBigger(me,other):

 return me[R] > other[R]

def eat(me,other):

 me[R] = int((me[R]**2 + other[R]**2)**.5)

def offScreen(me):

 return me[X] < 0 or me[X] > SCREEN_W or me[Y] < 0 or me[Y] >

SCREEN_H

def hit(enemy, me):

 distsq = (enemy[X]-me[X])**2 + (enemy[Y]-me[Y])**2

 return (enemy[R]+me[R])**2 > distsq

def getRandDot():

 x = random.randint(1, SCREEN_W)

 y = random.randint(1, SCREEN_H)

 r = random.randint(5,50)

 which = random.randint(0,3)

 mydx = random.randint(-DELTA+1, DELTA-1)

 mydy = random.randint(-DELTA+1, DELTA-1)

 return [x,y,mydx,mydy,r,PINK]

The only new piece of logic here circle-circle intersection. To determine this, we use

the distance formula to take the distance between two circles and compare that to the

sum of the radii of the two circles.

The key drawback of this split of files is that the variables for the screen and the list

indexes are duplicated. For that weakness though, in both files we get to write more

compact code, which is easier to read. For the sake of completeness, here is the whole

file dotgame.py for this version:

import random

import math

import time

import dotfunctions

import pygame, sys

from pygame.locals import *

SCREEN_W = 1000

SCREEN_H = 600

DELTA_ME = 1

DELTA = 5

X = 0

Y = 1

DX = 2

DY = 3

R = 4

CLR = 5

LIME = pygame.Color(180,255,100)

PINK = pygame.Color(255,100,180)

WHITE = pygame.Color(0,0,0)

pygame.init()

DISPLAYSURF = pygame.display.set_mode((SCREEN_W, SCREEN_H))

pygame.display.set_caption("Dot Game!")

clock = pygame.time.Clock()

dots = []

me = [SCREEN_W//2, SCREEN_H//2, 0, 0, 20, LIME]

curT = time.clock()

score = 0

dropped = 0

step = 0

alive = True

while True:

 for event in pygame.event.get():

 if event.type == QUIT:

 pygame.quit()

 sys.exit()

 if event.type == KEYDOWN:

 if event.key == K_DOWN:

 dotfunctions.changeVel(me, 0, DELTA_ME)

 elif event.key == K_UP:

 dotfunctions.changeVel(me, 0, -DELTA_ME)

 elif event.key == K_RIGHT:

 dotfunctions.changeVel(me, DELTA_ME, 0)

 elif event.key == K_LEFT:

 dotfunctions.changeVel(me, -DELTA_ME, 0)

 if step%20 == 0:

 dots.append(dotfunctions.getRandDot())

 dotfunctions.move(dots)

 dotfunctions.moveItem(me)

 for item in dots:

 if dotfunctions.hit(me, item):

 if not dotfunctions.isBigger(me, item):

 alive = False

 else :

 dotfunctions.eat(me,item)

 dots.remove(item)

 dotfunctions.removeUseless(dots)

 DISPLAYSURF.fill(WHITE)

 for item in dots:

 pygame.draw.circle(DISPLAYSURF, item[CLR], (item[X], item[Y]),

item[R], 0)

 pygame.draw.circle(DISPLAYSURF, me[CLR], (me[X], me[Y]), me[R], 0)

 pygame.display.update()

 if not alive:

 print("Sorry, you died with a score of",me[R])

 pygame.quit()

 sys.exit()

 elif dotfunctions.offScreen(me):

 print("Sorry, you ran off the screen. Score=",me[R])

 pygame.quit()

 sys.exit()

 clock.tick(10)

 step += 1

V. Example - Dot Game, 3 Files

In this version, we only place the variables meant to be constant throughout the

program in a single new file, dotconsts.py. The advantage of doing this is that there is

only one place they are defined, so there's only one place we would have to change

them if we decided to do so. Also, there's no chance of inconsistency between two

different files where the constants are declared separately. (Imagine misstyping the

constant in one file or deciding to change it when working on one file and forgetting

to go back to the other.) The drawback is that when referencing these constants in

either dotgame.py or dotfunctions.py, you have to precede each constant with

"dotconsts.", which can get tedious. Here is a sample of a couple of the functions

from dotfunctions.py:

Returns true iff mypos is within the picture specified by f.

def hit(enemy, me):

 distsq = (enemy[dotconsts.X]-me[dotconsts.X])**2 + (enemy[dotconsts.Y]-

me[dotconsts.Y])**2

 return (enemy[dotconsts.R]+me[dotconsts.R])**2 > distsq

def moveItem(item):

 item[dotconsts.X] += item[dotconsts.DX]

 item[dotconsts.Y] += item[dotconsts.DY]

And here is a sample of the code from dotgame.py in the three file version:

See if I am eating a dot!

for item in dots:

 if dotfunctions.hit(me, item):

 # I die :(

 if not dotfunctions.isBigger(me, item):

 alive = False

 # I grow - my new area is your area plus mine!

 else :

 dotfunctions.eat(me,item)

 dots.remove(item)

So my list doesn't grow endlessly!

dotfunctions.removeUseless(dots)

The code samples contain the three files in their entirety.

