
pyGame Lecture #8
(Examples: soundbutton, badmario)

SOUND IN PYGAME

I. Power of Sound

Games are supposed to fully immerse a user into some virtual reality. Incorporating
sound into a game greatly enhances the users experience and can have a large impact
on brining your game to life. There are two main forms of sounds in video games:
noises that result from players actions and music that plays in the background.
PyGame has two options: music and sounds. Music will play in the background of
your game while a sound will play when you call them.

II. Sound modules

The pyGame mixer module contains the classes you will need to implement sounds in
your game.

For a full reference of sound events, go to:
https://www.pygame.org/docs/ref/mixer.html

The pyGame music module if very close to the mixer module, but the music module
will allow you to implement background music in your game.

For a full reference of music events, go to:
https://www.pygame.org/docs/ref/music.html

III. Soundbutton example

In this example we’ll use the pyGame mixer module to demonstrate how to
incorporate sounds into your game. For this program we’ll just have a simple button
that generates a random sound when clicked.

Step 1: Assign sound file

The pyGame mixer module has a Sound function that creates a new Sound object
from a file. To use this just pass the filename of your sound in the parameter.

This function is called in the soundbutton example as follows:

blip_sound = pygame.mixer.Sound("blip.wav")

boing_sound = pygame.mixer.Sound("boing.wav")

bubbles_sound = pygame.mixer.Sound("bubbles.wav")

Step 2: Play sound

To play a sound in pyGame you can call the play function to begin the playback of the
sound.

This function is called in the soundbutton example as follows:

pygame.mixer.Sound.play(sounds[idx])

The whole program, with comments is included on the following pages.

Ellie Kozlowski

Python Sound Example

import pygame

import random

import sys

pygame.init()

display = pygame.display.set_mode((650, 350))

white = (255,255,255)

display.fill(white)

button = pygame.image.load("button.png")

button = pygame.transform.scale(button, (200, 200)) # rescale button

display.blit(button, (220, 100))

myfont = pygame.font.SysFont("monospace", 30)

label = myfont.render("Press the button to make a sound!", 1, (0, 0,

0))

display.blit(label, (20, 50))

pygame.display.update()

assign sound files

blip_sound = pygame.mixer.Sound("blip.wav")

boing_sound = pygame.mixer.Sound("boing.wav")

bubbles_sound = pygame.mixer.Sound("bubbles.wav")

list to hold sound files

sounds = [blip_sound, boing_sound, bubbles_sound]

while True:

 for event in pygame.event.get():

 if event.type == pygame.QUIT:

 pygame.quit()

 sys.quit()

 # check if button is pressed

 if event.type == pygame.MOUSEBUTTONDOWN:

 if pygame.mouse.get_pressed()[0]:

 # generate random idx in list

 idx = random.randint(0, 2)

 # play sound

 pygame.mixer.Sound.play(sounds[idx])

IV. Badmario example

In this example we’ll use the pyGame music module to play the Mario theme music in
the background of this simple Mario game.

Step 1: Load music

To load a music file for playback pyGame has a load function that is passed the file
name of your music.

This function is called in the badmario example as follows:

pygame.mixer.music.load(“theme.wav”)

Step 2: Play music

To start the playback of a music stream pyGame has a play function that can be
passed multiple parameters. The first parameter is the loops argument which specifies
the number of times a song will repeat. For example, play(4) will make the song play
once, then four more times, for a total of five. If you pass a -1 then the song will
repeat indefinitely. The second parameter is the starting position argument which
controls where the song starts playing. The starting position is dependent on the
format of music playing.

This function is called in the badmario example as follows:

pygame.mixer.music.play(-1)

A -1 is passed in the parameter so that the music will repeat indefinitely.

The whole program, with comments is included on the following pages.

#Bryan Medina

#6/27/17

#badmario.py

#Crappy Mario....

import pygame, sys

from math import *

from random import randint

from pygame.locals import *

pygame.init()

DISPLAYSURF = pygame.display.set_mode((1000, 600))

mario = pygame.image.load("mario.png")

mario = pygame.transform.scale(mario, (64, 64)) #Resizing Mario image

background = pygame.image.load("background.jpg")

background = pygame.transform.scale(background, (1000, 600)) #Resizing

background image

shell = pygame.image.load("shell.png")

shell = pygame.transform.scale(shell, (32, 32)) #Resizing shell

pygame.mixer.music.load("theme.wav") #loads the music

pygame.mixer.music.play(-1) #play music infinitely

shells = [] #List for all the shell

#variables to keep track of the width and height of the screen

width = 1000

height = 600

velocity = 0 #Mario's Y velocity

velX = 0 #Mario's X velocity

posX = 500 #x position of our ball

posY = 530 #y position of our ball

GROUND = 500 #the surface our ball is sitting on

gravity = 2 #The reason why we always fall back to the ground

while True: #Game loop

 for event in pygame.event.get():

 if event.type == QUIT:

 pygame.quit()

 sys.quit()

 if event.type == KEYDOWN:

 if event.key == K_w: #if w is pressed

 velocity = -30 #inital y velocity will be non zero

 if event.key == K_a: #if a is pressed

 velX = -10 #Mario will move to the left

 if event.key == K_d: #if d is pressed

 velX = 10 #Mario will move to the right

 if event.key == K_SPACE: #if space is pressed

 shells.append([posX+60, posY, 20, shell])

#Shell will be thrown

#WARNING: this list will get huge fast... Make sure to

remove offscreen shells

 if event.type == KEYUP: #if the key is released

 velX = 0 #Mario's X velocity will be 0

 for shelly in shells: #Update the position of every shell in the list

 shelly[0] += shelly[2]

 velocity += gravity #add gravity to velocity

 posY += velocity # add velocity to position

 posX += velX #Change position of mario

 if posX >= width: # make him wrap around the screen

 posX = 0

 elif posX <= 0:

 posX = width

 if posY + 20 >= GROUND and velocity > 0:

#This keeps Mario above (or on theground)

 velocity = 0

 posY = GROUND

 DISPLAYSURF.blit(background, (0, 0)) #Display background

 DISPLAYSURF.blit(mario, (posX, posY)) #Display Mario

 for shelly in shells: #Display all shells

 DISPLAYSURF.blit(shelly[3], (shelly[0], shelly[1]))

 pygame.display.update()

