
pyGame Lecture #2 
(Examples: movingellipse, bouncingball, planets, bouncingballgravity) 

MOVEMENT IN PYGAME 
 

I. Realizing the screen is getting redrawn many times. 
 

Let's take a look at the key portion of the previous program: 

 

green = pygame.Color(0,255,0) 

 

while True: 

 

    for event in pygame.event.get(): 

        if event.type == QUIT: 

            pygame.quit() 

            sys.exit() 

 

    DISPLAYSURF.fill(black) 

    pygame.draw.ellipse(DISPLAYSURF, green, (500, 300, 50, 150), 10) 

  pygame.display.update() 

 

What's actually happening here is that the While True loop runs continuously, 
filling the display surface, drawing objects on the display surface and updating the 
display. In this particular example, the same exact ellipse and line are drawn over 
and over again, as opposed to being drawn just once. 

Since we have access to variables, if we drew a line or ellipse based on the value of 
variables, then each different time the display is updated, the line would be drawn 
in a different place. 

 

II. Using variables to make sure that each time an object is redrawn, 
it gets redrawn somewhere different, giving the appearance of 
motion. 

 

Let's do a very simple edit here, where instead of the ellipse x and y coordinates 
being set at 500 and 300, we set them to expressions based on variables: 

 

x = 20 



y = 100 

 

while True: 

 

    for event in pygame.event.get(): 

        if event.type == QUIT: 

            pygame.quit() 

            sys.exit() 

 

    DISPLAYSURF.fill(black) 

    pygame.draw.ellipse(DISPLAYSURF, green, (x, y, 50, 150), 10) 

    pygame.display.update() 

 

    x += 2 

    y += 1 

 

If we carefully trace this code, the first time through the while loop the ellipse is 
centered at x = 20, y = 100. But, after the display updates for the first time, we 
change both x and y so that x = 22 and y =101. Thus, the next time the ellipse is 
drawn, it's drawn 2 pixels to the right and 1 pixel down compared to where it was 
drawn previously. Because we initially fill the surface black each time through the 
while loop, the previously drawn ellipse with center (20, 100) doesn't show after the 
second update. Instead, as the while loop runs many times, it appears as if the 
ellipse is traveling in a straight line, roughly from the top left to the bottom right of 
the screen. 

In essense, the intial position of the ellipse is (20, 100) and in between each frame, 
the ellipse is translated 2 pixels in the x direction and 1 pixel in the y direction. In 
physics we call this, (2, 1), the velocity vector. The 2 represents the change in x and 
the 1 represents the change in y. In both physics and mathematics classes, one 
standard notation refers to the change in x as dx and the change in y as dy. 

 

  



III. What happens if we don't wipe the display surface clean? 
 

Now, let's take the previous answer and just move the line that paints the display 
surface all black to be before the while True loop: 

x = 20 

y = 100 

DISPLAYSURF.fill(black) 

while True: 

 

    for event in pygame.event.get(): 

        if event.type == QUIT: 

            pygame.quit() 

            sys.exit() 

    pygame.draw.ellipse(DISPLAYSURF, green, (x, y, 50, 150), 10) 

    pygame.display.update() 

 

    x += 2 

    y += 1 

 

After a second or so, what we see is the following static image: 

<Insert Image Here> 

Essentially what has happened is that as the loop ran many times, each time we added 

one ellipse to the canvas, without ever painting over the whole thing. Over time, all of 

these overlapping ellipses looked like a wide diagonal line. 

 

  



IV. Getting an object to "wrap around" the screen. 
 

In the first example with movement, we showed a strategy to move an object in the 
same direction at the same speed (in physics this is called constant velocity) for the 
duration of our program. The strategy is to set two variables representing the x 
coordinate and y coordinate of our object to some initial value before our main 
game loop. Then, for each time the game loop runs, we add/subtract a constant 
amount from each, representing the change in both x and y we would like to see 
between frames. 

Unfortunately, as was seen with the ellipse example, with this sort of movement, 
we'll lose an object forever once it goes off the screen. 

One possible modification to the movement of an object to make things more 
interesting is to have the object "wrap around" the screen. If the object goes off the 
bottom of the screen, have it reappear at the top. Similarly, if an object goes off the 
right side of the screen, have it reappear at the left. Do similar wrap arounds in the 
opposite direction as well. 

In some sense, the key is to detect when we've gone off the left, right, top or 
bottom of the screen. If we detect this behavior, then we have to translate the 
object (but not change its dx or dy) to the opposite side of the screen. 

For example, given that our screen is 1000 pixels wide, the following edit takes care 
of the right to left transition: 

 

 if x > 1000: 

        x = 0 

 

Three more if statements handle the other three transitions. Alternatively, if we 
carefully understand mod, we can replace the statement above with a single 
statement with an if: 

 

    x = (x + dx)%1000 

 

Essentially, when we mod by 1000, if something goes over 1000 by a small amount, 
it subtracts 1000 from it. 

 

 

 



The main part of our new program is as follows: 

x = 20 

y = 100 

dx = 2 

dy = 1 

 

while True: 

 

    for event in pygame.event.get(): 

        if event.type == QUIT: 

            pygame.quit() 

            sys.exit() 

 

    DISPLAYSURF.fill(black) 

    pygame.draw.ellipse(DISPLAYSURF, green, (x, y, 50, 150), 10) 

    pygame.display.update() 

 

    x = (x + dx)%1000 

    y = (y + dy)%600 

 

V. Getting an object to bounce off a wall 
 

To get an object to bounce off a wall, instead of translating it, we want to change the 

direction of its velocity. Thus, we we reach the bottom wall, if we continue to have a 

positive dy value, the ball will go below the bottom of the screen. We can simply 

detect when this occurs and negate our dy value. Similarly, if we go off the screen to 

the top, we must flip our dy value from negative to positive. In both instances, the 

same line of code does the trick: 

   dx = -dx 

 

Instead of using such a big ellipse, lets just use a regular circle that looks like round 

ball and make that ball bounce off the four walls of the screen. The resulting program 

is as follows: 

# Our initial settings 

x = 10 

y = 10 

r = 10 

dx = 2 

dy = 2 

 

 



while True: 

 

    # We just look to see if the user wants to exit. 

    for event in pygame.event.get(): 

         

        if event.type == QUIT: 

            pygame.quit() 

            sys.exit()     

 

    # Translate our object for the next frame. 

    x += dx 

    y += dy 

 

    # This does our bounce by changing the velocity component.  

    if x >= 1000-r or x <= r: 

        dx = -dx 

    if y >= 600-r or y <= r: 

        dy = -dy 

 

    # Draw, update and wait! 

    DISPLAYSURF.fill(black) 

    pygame.draw.circle(DISPLAYSURF, red, (x, y), r, 0) 

    pygame.display.update() 

    clock.tick(80) 

 

What happens here is that if we get to any boundary wall, all we have to do is flip that 

particular direction of movement (either dx or dy). The two if statements after the 

translation take care of this change of the movement direction. (Again, notice that x 

and y are NOT changed in this if statement since we don't want the ball to "jump" to 

a different place on the screen, but simply move in a different direction from where it 

is now.) 

 

  



VI. Circular movement (Trigonometry Required) 
 

One type of common motion is movement in a circle. Though this is a basic motion 

that we are familiar with from childhood on, the mathematics necessary to describe it 

isn't so elementary. The most typical way to describe circular movement is to use the 

sin and cos function, which themselves are defined based on the unit circle. In 

particular, when the angle θ is measured in radians, cos θ is defined as the x-

coordinate of the point on the unit circle at angle θ, as measured counter-clockwise 

from the positive x-axis and sin θ is defined as the y-coordinate of the point on the 

unit circle at angle θ. For a pixel system, if our center is at (cx, cy) and the radius of 

the circle of movement is rm, then we can describe the x and y values that correspond 

to any angle theta as follows: 

x = cx + (rm)cos(theta) 

y = cy + (rm)sin(theta) 

We can simply change theta after each frame, recalling that a change of 2π in theta 

represents a full revolution. With some trial and error, we can see what rate of change 

we would like. 

In the following example we draw a sun in the middle with three orbiting planets. The 

planets' in this example will complete a revolution in proportion to the area of the 

circle they define (via revolution). This means that a planet that is twice as far from 

the sun as another planet will take 4 times as long to go all the way around the sun. 

The program is included in its entirety. This example was made to be slightly more 

accurate than previous examples. As a result, the code is more lengthy. After the code, 

each piece will be explained. 

  



import math 

import pygame, sys 

from pygame.locals import * 

 

pygame.init() 

DISPLAYSURF = pygame.display.set_mode((700, 700)) 

pygame.display.set_caption("Planets") 

 

black = pygame.Color(0,0,0) 

red = pygame.Color(255,0,0) 

purple = pygame.Color(255,0,255) 

orange = pygame.Color(255,165,0) 

blue = pygame.Color(0,0,255) 

clock = pygame.time.Clock() 

 

# Revolution radii matching real ratios for Mercury, Venus, Earth  

# which are .39, .72 and 1. 

rRevMercury = 98 

rRevVenus = 180 

rRevEarth = 250 

 

# These are relative radii of the planet themselves, but not 

# the sun isn't relative. The real sun is much better, relatively. 

rMercury = 10 

rVenus = 23 

rEarth = 25 

rSun = 50 

 

# All of our initial positions. 

xSun = 350 

ySun = 350 

 

# Ratios of areas (just areas divided by pi...) 

aMercury = rRevMercury*rRevMercury 

aVenus = rRevVenus*rRevVenus 

aEarth = rRevEarth*rRevEarth 

 

# Current angles of each planet. 

thetaMercury = 0 

thetaVenus = 0 

thetaEarth = 0 

 

# Magic number that controls the speed of all the planets 

# The planet speeds are relatively set. 

dTheta = 150 

 

  



while True: 

 

    # We just look to see if the user wants to exit. 

    for event in pygame.event.get(): 

         

        if event.type == QUIT: 

            pygame.quit() 

            sys.exit()     

 

    # Adjust the angle of each planet accordingly. 

    thetaMercury += dTheta/aMercury 

    thetaVenus += dTheta/aVenus 

    thetaEarth += dTheta/aEarth 

 

    #Calculate x and y of each planet accordingly. 

    xMercury = (int)(xSun + rRevMercury*math.cos(thetaMercury)) 

    yMercury = (int)(ySun + rRevMercury*math.sin(thetaMercury)) 

    xVenus = (int)(xSun + rRevVenus*math.cos(thetaVenus)) 

    yVenus = (int)(ySun + rRevVenus*math.sin(thetaVenus)) 

    xEarth = (int)(xSun + rRevEarth*math.cos(thetaEarth)) 

    yEarth = (int)(ySun + rRevEarth*math.sin(thetaEarth)) 

 

    # Draw, update and wait! 

    DISPLAYSURF.fill(black) 

    pygame.draw.circle(DISPLAYSURF, orange, (xSun, ySun), rSun, 0) 

    pygame.draw.circle(DISPLAYSURF, red, (xMercury, yMercury), 

rMercury, 0) 

    pygame.draw.circle(DISPLAYSURF, purple, (xVenus, yVenus), rVenus, 

0) 

    pygame.draw.circle(DISPLAYSURF, blue, (xEarth, yEarth), rEarth, 0) 

    pygame.display.update() 

    clock.tick(80) 

 

Most of the first page is sets up constants. These constants are set up for a 700 x 700 

screen and utilize some real information about the planets Mercury, Venus and Earth. 

The relative radii are accurate as well as the radii of revolution.What's not accurate 

about this simulation is that the actual paths of revolution trace ellipses and not 

circles. In addition, in order to more easily see the planets on a relatively small screen, 

the radius of the sun relative to the three planets is much smaller than it ought to be. 

Finally, instead of using the actual periods of rotation of the planets, the mathematical 

rule that approximates Kepler's Law related to planetary motion is used. 

On the second page we first adjust the angles of rotation for each of the planets. 

These adjustments are different for each planet based on the total area encompassed 

by their revolutions. The value of dTheta was set via trial and error to make the 

revolution "look nice." Next, we do the most important calculations: the x and y 



coordinates of each of the planets. The center of the sun represents the center of the 

circles traced by the paths of the planets, thus xSun and ySun represent this 

translation and are simply the added to the end result for each x and y coordinate 

respectively of the planets. Since cos and sin represent the x and y values of points on 

the unit circle, to scale these points to larger or smaller circles, we simply multiply cos 

and sin of the appropriate angle by the appropriate radius. In this case, for each 

planet, we multiply cos and sin of the appropriate angle by the radius of revolution for 

that planet. Once we've made all of these calculations, we have all the information we 

need to draw the appropriate circles for that frame. 

VII. More Accurate Bouncing Ball (Physics Required) 
 

When a ball is dropped from a height, the position of the ball is governed by the 

acceleration of gravity, wind resistance and the energy dissipated on the surface on 

which te ball bounces. While the latter two phenomena are relatively complicated to 

model, the effect of gravity on the ball is relatively easy to model. In this example we'll 

create a ball that bounces forever (perfect collisions with the ground with no energy 

lost), which follows the law of gravity. 

In order for us accurately model the ball bouncing up, we have to keep track of the 

velocity of the ball. Let this be v. The relationship between velocity and acceleration is 

simply 𝑣 = 𝑣0 + 𝑎𝑡, where v0 is the initial velocity. Acceleration for this example will 

simply be due to gravity. Since each iteration of the while loop is one time step and we 

are simulating the process, we will use the following approximation: 𝑣𝑡+1 = 𝑣𝑡 + 𝑎, 

calculating the new velocity in terms of the previous velocity. This will allow us to do 

a reasonable implementation without any variable t! 

If we want to do a simple simulation however, it's easy enough for us to update our 

velocity after each simple time step and then assume that the ball travels at that 

velocity constantly just for that time step. When the ball hits the ground, we'll simply 

flip the sign of the velocity. 

 

 

 



pygame.init() 

DISPLAYSURF = pygame.display.set_mode((700, 700)) 

pygame.display.set_caption("Dropped Ball") 

 

black = pygame.Color(0,0,0) 

red = pygame.Color(255,0,0) 

clock = pygame.time.Clock() 

 

# Height will represent the traditional physics height 

# The display is opposite with the y value further down being bigger. 

# So, when we draw, we'll "flip" the height, so to speak. 

height = 600 

 

# This will be our initial velocity 

velocity = 0 

 

# This is constant - we have to play with this and the clock tick to 

# get the simulation to look the way we want. 

acceleration = -3 

 

while True: 

 

    # We just look to see if the user wants to exit. 

    for event in pygame.event.get(): 

         

        if event.type == QUIT: 

            pygame.quit() 

            sys.exit()     

 

    # In one time step, this is what happens to velocity. 

    velocity = velocity + acceleration 

 

    # And this is what happens to height 

    height = height + velocity 

 

    # See if a bounce has occurred. If so, flip the velocity 

    if height <= 0: 

        velocity = -velocity-acceleration 

        height = 0 

 

    # Draw, update and wait! 

    DISPLAYSURF.fill(black) 

    pygame.draw.circle(DISPLAYSURF, red, (350, 700-height), 20, 0) 

    pygame.display.update() 

    clock.tick(50) 

 

We adjust the velocity at each "time step" (loop iteration) based on acceleration. Then 
we adjust the height based on the velocity. Finally, if we've gone below the ground, we 
adjust our variables so the height is set back to 0 and the velocity flips signs. To keep 
the ball from losing "bounce" and converging to the ground, an extra update is given 
to the velocity in the if statement when the ball hits the ground, so that on its way up, 
the ball gets to its previous apex. 


