
pyGame Lecture #3
(Examples: movement, tennispractice)

KEYBOARD INPUT IN PYGAME

I. Need for User Interaction

So far, all of our pyGame programs have not included any user interaction. Since the

user doesn't interact with the computer, roughly speaking, each of these programs do

the same exact thing each time they are run. We could infuse some random numbers

into these programs so that each simulation is somewhat different, but ultimately, this

wouldn't be too much fun either. Just like programs that run on the command line,

the real fun occurs when the user interacts with the program and that interaction

changes what the program does. Certainly, without this interaction, there would be no

"game" in pyGame!

II. Detecting Keyboard Input in pyGame

Unlike traditional programming where we typically prompt the user for input and

then wait until she types something in the keyboard, in a game, we'd prefer for other

things to continue and simply to notice the presence of a key press and act

accordingly. Namely, each time our code goes through its main game loop, we'd like

to check if any key on the keyboard was pressed. A keypress is a type of event. In

particular one of the events that we can check for in pyGame is the KEYDOWN

event. If there is a KEYDOWN event, we can further check to see whick key was

pressed. Each key has a code in pyGame. For example, the down arrow key code is

K_DOWN. The variable that stores which key was pressed during a KEYDOWN

event is key. A full list of the codes for each of the different keys can be found here:

https://www.pygame.org/docs/ref/key.html

Each of these codes can be checked for either a KEYDOWN event or a KEYUP

event.

The following code segment checks to see if the up arrow key, down arrow key, left

arrow key or right arrow key were pressed. If they were, the corresponding variable, x

or y, is adjusted accordingly:

while True:

 for event in pygame.event.get():

 if event.type == QUIT:

 pygame.quit()

 sys.exit()

 if event.type == KEYDOWN:

 if event.key == K_DOWN:

 y += dy

 if event.key == K_UP:

 y -= dy

 if event.key == K_LEFT:

 x -= dx

 if event.key == K_RIGHT:

 x += dx

Naturally, there are many events that we could check for in the event loop and a

KEYDOWN event is the first non-trivial one that we've introduced. Many if

statements could reside in the for event loop, each looking for various events.

III. Movement Example

The first example we'll use to illustrate checking for keydown events is a simple

program that has a circle that the user can move with the arrow keys. The circle will

start in the middle of the screen and sit there. Whenever the user presses the up key,

the circle will move up, when the user presses the left arrow key, the circle will move

left, and so forth. In this particular example, each single keydown press will result in a

single movement of the circle. The circle won't continue moving if a key is held down

and the circle x won't move again until the next keydown event. This gives the user

very good control of the box, in terms of accuracy, but makes it very difficult to move

the circle quickly. Codewise though, this example is relatively clean and simple

without difficult mathematics. We utilize the concepts of storing an x and y

coordinate for the circle's location as well as a dx and dy to represent its movement.

But generally, dx and dy are 0 except for the game loop iterations where a keydown

event occurs.

Here is the full program (movement):

import pygame, sys

from pygame.locals import *

pygame.init()

DISPLAYSURF = pygame.display.set_mode((600, 600))

pygame.display.set_caption("Movement Demo!")

black = pygame.Color(0, 0, 0)

purple = pygame.Color(255, 0, 255)

x = 300 #The balls initial x position!

y = 300 #The balls initial y position!

dx = 5 #How fast the ball is moving in the x

dy = 5 #How fast the ball is moving in the y

while True: #Game Loop

 for event in pygame.event.get():

 if event.type == QUIT:

 pygame.quit()

 sys.exit()

 if event.type == KEYDOWN:

 if event.key == K_DOWN:

 y += dy

 if event.key == K_UP:

 y -= dy

 if event.key == K_LEFT:

 x -= dx

 if event.key == K_RIGHT:

 x += dx

 DISPLAYSURF.fill(black) #make the background black

 pygame.draw.circle(DISPLAYSURF, purple, (x, y), 20, 0)

 pygame.display.update() #Updates the frame

IV. Combining User Input with Interesting Movement

In some relatively simple video games, the user controls a paddle with two arrow keys
(either left-right or up-down) and the goal is for the paddle to block a ball. In terms of
separate components necessary to implement this general idea, we've already seen
everything we need:

1. Linking key presses to changes in variables, which in turn display the paddle in
different places.
2. Detecting when the ball reaches a paddle and then changing the direction of its
velocity.

In this example we'll simulate tennis practice. In a regular tennis practice session, a
coach hits balls over and over again to the student. The student runs to where the ball
is and hits it back across the net. In this example the player will be on the left with the
ability to slide their paddle all the way up or all the way down and the balls will be
shot from the right side of the screen, traveling horizontally towards the left side of
the screen. The goal will be for the player to simply line up their paddle so that the
ball hits the paddle before getting past the left side of the screen. As the player hits
more balls, the frequency with which the balls come will increase. For this program,
when the paddle makes contact with the ball, the ball just disappears. (Many things are
poorly done in this program. Improving it is left as an exercise for the reader!!!)

First, let's consider controlling the paddle. Rather than only have the paddle move
when the arrow key is pressed down, we'll have the paddle continue moving. Namely,
pressing the arrow key will affect the dy of the paddle and the paddle will continue in
motion until the opposite key is pressed. Here is that segment of code:

while True:

 # Event loop for each iteration

 for event in pygame.event.get():

 # To handle exiting the game.

 if event.type == QUIT:

 pygame.quit()

 sys.exit()

 # Here are the key presses we respond to.

 if event.type == KEYDOWN:

 if event.key == K_DOWN:

 paddleDY += PADDLE_DELTA

 if event.key == K_UP:

 paddleDY -= PADDLE_DELTA

Unfortunately, when you press the same key a couple times, just changing dy makes
the paddle very difficult to control. It goes very fast and it's hard to reign it back in.
(Try it out without the second part of the code we're about to show!) Thus, in order
to make the paddle a bit easier to control, we want to make the dy not immediately go
to 0 (this is what happened in the movement example), but we'll have it slowly taper
back to 0 in the absence of any key presses. Before our main game loop we set up a
new variable called framecount:

framecount = 0

At the end of the game loop we simply increment framecount by 1:

framecount += 1

In the following code segment, we show how to reduce the absolute value of the
paddleDY variable by 1 once every five frames. This code is located after the for
loop looking for events:

 if framecount%5 == 0:

 if paddleDY > 0:

 paddleDY -= 1

 elif paddleDY < 0:

 paddleDY += 1

Notice that if we want something to trigger once every k iterations of the main game
loop, we can simply keep a framecounter and check its remainder when divided by k.
This way, the taper doesn't happen too quickly (over five frames). Instead, after one
key press, it takes 25 iterations of the game loop for the paddle to come to rest.
(Depending on the clock tick, the total amount of time here varies, but this could
easily be slightly less than one second.)

The other key pieces of logic to get this example to work are constraining the paddle
movement so that it doesn't go off the screen, checking for a collision between the
ball and paddle, and checking to see if the ball went off the left side of the screen.
Let's investigate each of these pieces separately.

First, consider the problem of making sure the paddle doesn't move off the screen. If
we know the y value near the top of the screen and the bottom of the screen, we can
simply choose NOT to translate the rectangle corresponding to the paddle if it's
already at the top or bottom:

 if paddleY + paddleDY < SCREEN_H-PADDLE_L and paddleY + paddleDY >= 0:

 paddleY += paddleDY

Note that paddleY + paddleDY represents where we want to move the paddle. But,
we will only move it there if this represents a valid location (not off the screen). Since
the paddleY value represents the y value of the top of the rectangle, adding this to the
length of the paddle (PADDLE_L) will give the y value of the bottom of the
rectangle. What is checked above is equivalent. It states that the paddle only gets
moved if the top of the rectangle will be at a y value less than the screen height minus
the paddle length. Similarly, we require the y value of the top of the rectangle to be at
least 0.

To check for a collision between the ball and paddle, this example makes a slight
inaccuracy to simplify the arithmetic. Instead of treating the ball as a circle, it treats
the ball as its circumscribed square, looking to see if that square intersects any part of
the paddle. Checking for x is relatively simple becase the x value of the paddle is fixed.

To check for y, we must note that the center of the circle could be upto r pixels above
the top of the paddle or upto r pixels below the bottom of the paddle. We need all
three constraints (x value, and both the lower and upper bounds on y) to
simultaneously be satisfied, so we use the and operator. If there is a collision, then we
want to add 1 to the player's score and generate a new ball that will be hit to the
player. The new ball will start on the right side of the screen at a randomly chosen y
value:

 if x < DELTA*3//2 and y + r >= paddleY and y - r <= paddleY+PADDLE_L:

 score += 1

 x = SCREEN_W - DELTA

 y = random.randint(DELTA, SCREEN_H-DELTA)

The first part of the if checks to see if the ball is close enough to the left end of the
screen. The second part checks to see that the lower bound on the y coordinate of the
ball is satisfied and the last part checks to see if the upper bound on the y coordinate
of the ball is satisfied. y+r represents the bottom of the ball and y-r represents the top
of the ball. We then compare these to the top and bottom of the rectangle,
respectively.

Finally, checking to see if the ball went off the left side of the screen is easy; we just
look for a negative x value:

 if x < 0:

 print("Sorry, you lose, your score is",score)

 pygame.quit()

 sys.exit()

 break

There are many edits that could improve this "game." Here are a few ideas:

1. Make it a two player game, with a racket/paddle on the right side of the screen.
Allow the ball to move diagonally somehow.

2. Don't end the game after one ball is missed. Allow the game to continue in some
fashion, in either/both the one and two player versions.

3. Use actual tennis scoring for a single game with a serve triggered by a key press.

4. Come up with your own modification!

