
Python Lecture: Nested Loops
(Examples: mult, stars, primetest, diamond, checkerboard)

Loops Inside of Loops

I. Analogy - Nested Loops and Tables, Multiplication Table

In most of the loop situations we have encountered so far, a loop index marches

linearly in some direction, eventually stopping when it gets too big or too small. If we

were to visualize each unique value of the loop index, we most likely would visualize

each of the values in the order the variable takes them, in one long line.

For example, the loop structure

for i in range(10, 40, 3):

we might visualize the different values i equals in sequence as follows:

10 13 16 19 22 25 28 31 34 37

But, imagine that we wanted to visualize a table of some sort, such as this one:

1 2 3 4 5

2 4 6 8 10

3 6 9 12 15

4 8 12 16 20

5 10 15 20 25

You might recognize this as a multiplication chart. Each row of the chart shows a

sequence of values. Naturally, we might think of designing a loop just to print one

row.

But then, we'd have to write five loops in a row just to print out this chart. One might

initially come up with this to get the chart on the previous page:

for j in range(1, 6):

 print(j,end="\t")

print()

for j in range(1, 6):

 print(2*j,end="\t")

print()

for j in range(1, 6):

 print(3*j,end="\t")

print()

for j in range(1, 6):

 print(4*j,end="\t")

print()

for j in range(1, 6):

 print(5*j,end="\t")

print()

But, this seems to be a bit wasteful. What if we want to print a multiplication chart for

all positive integers upto 20, would we really want to write out 20 loops, one after the

other?

What we notice here is that the print itself in each of the different loops is pretty

similar. In fact, the only thing that changes between each different print between

successive for loops is what we multiply j by. The values we multiply j by follows a

relatively straight-forward pattern: 1, 2, 3, 4, 5. If we think about our inner loop, we

see that part of the point of loops is to encapsulate patterns so we don't have th

physically type out so many lines of code. Thus, we can simply create a loop with a

different variable to go through the integers 1, 2, 3, 4 and 5. Our resulting code is as

follows:

for i in range(1, 6):

 for j in range(1, 6):

 print(i*j,end="\t")

 print()

We've found the underlying pattern in the repeated code and abstracted it away,

expressing the repeated for loops by putting our initial for loop that we wrote multiple

times as a single line of code inside of another for loop! Needless to say, this shortens

our code and makes it much more flexible to modify. (We can very easily changet his

version to print out a 20 x 20 multiplication chart. The same edit on the old version

would be quite tedious!)

II. Stars - a More Complicated Nested Pattern

Consider the task of printing a right triangle pattern of stars, where each row has one

more star than the previous row. Here is the design for n = 10 rows:

*

**

Let's write this program without the use of Python's * operator which multiplies

strings. (If we use it, we can print this design without a nested loop structure.)

On the first row, we want one star. On the second row, we want two stars. In general,

let's consider the problem of printing i stars on a single row. We can do it as follows:

for j in range(i):

 print("*",end="")

print()

Now, we simply see that we want i to be 1, then 2, then 3, etc. But this is just a loop

itself. So, our solution simply becomes:

for i in range(1,11):

 for j in range(i):

 print("*",end="")

 print()

If we carefully trace through the code, we can see that when i is set to 1, j assumes just

the value 0. When i is then set to 2, j assumes the values 0 and 1. When i is set to 3, j

assumes the values 0, 1 and 2. The pattern continues until the last iteration of the i

loop when i=10 and then j assumes the values 0,1,2,3,4,5,6,7,8 and 9. A good way to

visualize the movement of loop indexes of nested loops is to list each row for the

outer variable, and on that row, list the values of the inner loop variable:

i= 1: j=0

i= 2: j=0,1

i= 3: j=0,1,2

...

i=10: j=0,1,2,3,4,5,6,7,8,9

III. Prime Number Example

Now, let's consider the problem of printing out all of the prime numbers in a range.

(Normally, we could do this with a prime sieve, but for this example, we'll use a less

efficient but more straight-forward strategy that utilizes a nested loop structure. The

prime sieve does as well, but it also uses a list, which we haven't seen yet.)

First, let's simplify our problem to determining if a particular number num is prime or

not. We must try dividing i by each integer, starting at 2, ending at num-1. If any of

these divisions produces an integer, then i is not prime. Technically, we can show that

we can stop our trial division at √𝑛𝑢𝑚, but for this exam we'll just try all of the

divisions upto num-1. Let's say for this simplified problem, if the number is prime, we

print it and if it's not, we do nothing.

First, let's think about trial division. If one number divides equally into another one,

what that really means is that there's no remainder when the division is carried out.

Luckily, the mod operator (%) provides us the remainder of a division. Thus, this is

the preferred way to check for divisibility between integers. To determine whether or

not a value is prime, we'll use a boolean variable (a variable that can be either True or

False). Initially, this variable will be set to True (indicating that by default, until proven

otherwise, we assume num is prime. But, if we find proof that num isn't prime, we'll

just change the value of this boolean variable to False.

Here is our segment of code that solves the problem for a single variable num:

isPrime = True

for div in range(2, num):

 if num%div == 0:

 isPrime = False

 break

 if isPrime:

 print(num,end=" ")

Now, if we want to check to see which integers from integer start to integer end is

prime and just print out the ones that are, we can simply just put this whole segment

of code inside a loop where num ranges from start to end inclusive!

Here is the full program (primetest):

def main():

 start = int(input("What is the starting point of your range?\n"))

 end = int(input("What is the ending point of your range?\n"))

 print("All the primes in between",start,"and",end,"are:")

 for num in range(start, end+1):

 isPrime = True

 for div in range(2, num):

 if num%div == 0:

 isPrime = False

 break

 if isPrime:

 print(num,end=" ")

 print()

main()

IV. Diamonds are a Woman's Best Friend

Now we come to an example that requires more precise control with a nested loop
structure. Let's define a diamond of 2n-1 carats to be composed of 2n-1 rows, where
the first row has 1 star, the second 2 stars, the nth row has n stars, the n+1 row has n-
1 stars, the n+2 row has n-2 stars, until the last row which has one star, with spaces
on some rows so the shape looks like a diamond. Here is a 7 carat diamond:

 *

 *

First, we note that the first n rows follow one pattern while the next n-1 rows follow a
different pattern. It makes sense for us to split our problem into two separate
problems, one for printing the top of the design and the other for printing the bottom
portion of the design.

What makes this design more difficult than the prior star example is that we have to
print some spaces before stars on some rows. For the example with n = 4 (7 carat
diamond), on the first row we have 3 spaces and 1 star. On the second row we have 2
spaces and 3 stars. On the third row we have 1 space and 5 stars. On the fourth row

we have 0 spaces and 7 stars. The pattern is that the spaces start at n-1 and decrease
by 1 each time while the stars start at 1 and increase by 2 each time. While one loop
variable can be used to control both of these changes, it tends to be easier for
beginning programmers to use two variables, one for spaces and one for stars.

So, one strategy that can work is for us to initialize our variables for spaces and stars
before our outer for loop. Then, within the for loop, we have two separate inner for
loops - one that prints spaces, followed by one that prints stars. After both of these
loops complete, we update our variables for both spaces and stars, accordingly. In the
code segment below that prints this part of the star design, carat is the original input
(required to be an odd integer):

spaces = (carats-1)//2

stars = 1

for i in range((carats+1)//2):

 for j in range(spaces):

 print(" ", end="")

 for j in range(stars):

 print("*", end="")

 spaces = spaces - 1

 stars = stars + 2

 print()

In terms of designing this code, it really helps to be able to know how to write a loop
that "prints spaces number of spaces." That way, you can put a note to yourself to do
this inside the main loop and later, fill in the loop that accomplishes this task.

Now, the second portion of the design starts with 1 space and carats-2 stars on a row.
(This is the n+1 row of the whole design.) From there, the spaces increment by 1 for
each subsequent row and the stars decrement by 2 for each subsequent row.

Roughly speaking, we can use the same general strategy we used above to print the
top portion of the design, but we just have to modify the parts of this design that are
different for the bottom half. This includes the initial values for spaces and stars, the
number of time the outer loop runs (n-1 not n), as well as the increments for both
spaces and stars. The second portion of the program is included on the next page:

 spaces = 1

 stars = carats - 2

 for i in range((carats+1)//2):

 for j in range(spaces):

 print(" ", end="")

 for j in range(stars):

 print("*", end="")

 spaces = spaces + 1

 stars = stars - 2

 print()

V. Checkerboard with the Turtle

This last example utilizes the Python Turtle. We will display a red and black
checkerboard with the Python Turtle. Our usual loop structure to print out an 8 by 8
board would be a nested loop structure, where both loops run 8 times. Unlike our
previous example however where we just always print out a star or something very
simple related to our loop indices, here we have to do a couple things that are more
complicated:

1. Every other square will be red and the color of the starting square is different on
different rows.

2. We have to contend with pixel values instead of just drawing things at row i and
column j.

There is a very elegant solution to the first issue. Let our basic looping structure look
as follows:

SIZE = 8

for row in range(SIZE):

 for col in range(SIZE):

With this looping structure, here are the values or row and col at each location of the
checkerboard for the first two rows. Red squares are drawn in red:

(0, 0) (0, 1) (0,2) (0,3) (0, 4) (0, 5) (0,6) (0,7)

(1, 0) (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7)

The key pattern is that for each red square, the sum of the row and col variables is
even and for each black square, this sum is odd. This makes a great deal of sense once
you think about it. If the top left is red and it's (0, 0), then if we move directly right or
down, we are adding precisely one to the sum of row and col, and by the definition of
how a checkerboard is arranged, we change color as well. Getting from any red square
to any other red square requires an even number of moves up, down, left or right.
Thus, the sum of row and col will always keep the same parity (odd or even) when
moving between two red squares. Same for two black squares. Thus, we can add an if
statement inside of the nested loop structure to set our fill color accordingly:

SIZE = 8

for row in range(SIZE):

 for col in range(SIZE):

 if (row+col)%2 == 0:

 turtle.fillcolor("red")

 else:

 turtle.fillcolor("black")

Our second issue is when row = 0 and col = 0, we might not want to necessarily draw
our square from pixel (0, 0). We want to keep our main loop as we have above
because it nicely takes care of both the design of squares we have to draw and we've
solved the color issue utilizing the parity of the row and col variables. Thus, we must
solve our problem by mapping each (row, col) pair to different pixel values (x, y). One
nice way to solve this problem is to set up three constants:

LEN = 50

STARTX = -200

STARTY = -200

STARTX and STARTY represent the pixel coordinates of the bottom left corner of
the checkerboard and LEN represents the length of the side of a single square of the
checkerboard. With these constants, we can set the x and y coordinate of the bottom
left coordinates of a single square to draw as follows:

x = STARTX + col*LEN

y = STARTY + row*LEN

Once we know where the bottom left corner of the single square is, we simply need to
run a loop that draws the four sides of the square. This loop runs four times and in
the body of the loop the turtle goes forward and then turns left, since we're starting at
the bottom left corner:

for i in range(4):

 turtle.forward(LEN)

 turtle.left(90)

Here is the program in its entirety:

import turtle

SIZE = 8

LEN = 50

STARTX = -200

STARTY = -200

def main():

 # Draw fast and make our color red.

 turtle.speed(0)

 # Double loop through each of the 8 x 8 squares.

 for row in range(SIZE):

 for col in range(SIZE):

 # Set the fill color based on the parity of row+col.

 if (row+col)%2 == 0:

 turtle.fillcolor("red")

 else:

 turtle.fillcolor("black")

 turtle.begin_fill()

 # Calculate where to go.

 x = STARTX + col*LEN

 y = STARTY + row*LEN

 # Move the pen there.

 turtle.penup()

 turtle.setpos(x,y)

 turtle.pendown()

 # Draw the square.

 for i in range(4):

 turtle.forward(LEN)

 turtle.left(90)

 # This ends the fill of this square.

 turtle.end_fill()

main()

