
PYTHON NOTES

(FUNCTIONS)

There are two fundamental reasons functions are helpful when programming. They help by dividing programs
into smaller manageable pieces, also by taking advantage of code reusability. Functions take in an input value
and return an output value to where the function was called.

The function syntax in python is the following.

def <Function Name>(param1, param2, …):

 return param1

<Functions Name>(argument1, argument2, …)

Only variables declared globally, declared within the function, or passed as a parameter may be used.
Variables declared. The user will receive a “UnboundLocalError” when trying to use variables that have not
been created or passed within the function.

Functions do not necessarily need parameters and arguments when performing anything neither do they need to

return a value. With simply a return that is not followed by a variable will return nothing when executed.

This is the function names. They must be

unique and start with a letter

These are the parameters, they are

the values that will be passed and can

be used within the function

This is the return statement. Any

variable following the return statement

will return the value from the function

to where the function was originally

called

These are the function arguments, they

are the variables that are passed to a

function

This code segment is the function call.

Reusability allows a simple way to execute the same sequence of code multiple times compared to copying the
same lines of code into multiple sections of the program. Using the code above if we were to get the value for

23 and 32.

Example of solving problem from above without a
function:

#without function example program

val = 1

base = 2

exp = 3

while(exp > 0):

 val = val * base

 exp-=1

print(val)

val=1

base = 3

exp = 2

while(exp > 0):

 val = val * base

 exp-=1

#prints 9

Print(val)

Example of solving problem from above with
function:

#function example program

def pow(base, exp):

 if(exp == 0):

 return 1

 while(exp > 0):

 val = val * base

 exp-=1

 return val

val = 1

#prints 8

print(pow(2, 3))

#prints 9

Print(pow(3, 2))

Note that above it was a lot easier to make two functions calls of pow compared to the multiple while loops

and reassigning variables. The code on the right has readability compared to the example on the left. The

program stars2017.py (below) it is apparent the usefulness of functions shortening and simplifying the code if

functions were not used.

Arup Guha

6/19/2017

Stars program to practice nested loops.

QUIT = 7

def main():

 menu()

 choice = int(input("What is your choice?\n"))

 # Continue printing until the user quits.

 while choice != QUIT:

 # All designs take in a character, so do this first.

 ch = input("What character do you want for your design?\n")

 # First choice - parallelogram

 if choice == 1:

 rows = int(input("How many rows in your parallelogram?\n"))

 cols = int(input("How many columns in your parallelogram?\n"))

 parallelogram(rows, cols, ch)

 # Second choice - right triangle, left justified

 elif choice == 2:

 n = int(input("How many rows for your left justified right

triangle?\n"))

 rightTri(n, ch)

 # Third choice - right triangle, right justified

 elif choice == 3:

 n = int(input("How many rows for your right justified right

triangle?\n"))

 rightJustifiedTri(n, ch)

 # Error message.

 elif choice != QUIT:

 print("Sorry, that was an invalid choice.")

 # Get next choice.

 menu()

 choice = int(input("What is your choice?\n"))

def menu():

 print("Please choose one of the following options:")

 print("1. Print a parallelogram.")

 print("2. Print a left justified right triangle.")

 print("3. Print a right justified right triangle.")

 #print("4. Print a sideways pyramid.")

 #print("5. Print a regular pyramid.")

 #print("6. Print a diamond.")

 print("7. Quit")

Prints out a left justified triangle of n rows using character c.

def rightTri(n, c):

 # Print out row i.

 for i in range(1,n+1):

 # We need i copies of character c.

 for j in range(i):

 print(c,end="")

 print()

Prints out a right justifed triangle of n rows using character c.

def rightJustifiedTri(n, c):

 # i is the row number.

 for i in range(1, n+1):

 # Print n-i spaces

 for j in range(n-i):

 print(" ", end="")

 # Print i copies of character c.

 for j in range(i):

 print(c, end="")

 # Go to the new line.

 print()

Prints a parallelogram with rows # of rows, cols # of cols using

character c.

def parallelogram(rows, cols, c):

 # Go through each row.

 for i in range(rows):

 # Print i spaces.

 for j in range(i):

 print(" ", end="")

 # Print cols copies of character c.

 for j in range(cols):

 print(c, end ="")

 # Go to the next line.

 print()

main()

When using functions in python it is important to note that changes to variables passed to the function will
remain the same value it was prior to the function after returning from the function. To combat this issue Global
variables may be used or returning the needed value from the function.

Example of global variable:

#function example program

val = 1

def main():

 #prints 1

 print(val)

 pow(2, 3)

 #prints 8

 print(val)

def pow(base, exp):

 global val

 if(exp == 0):

 return 1

 while(exp > 0):

 val = val * base

Example of returning value:

#function example program

def main():

 val = 1

 #prints 1

 print(val)

 val = pow(2, 3)

 #prints 8

 print(val)

def pow(base, exp):

 if(exp == 0):

 return 1

 while(exp > 0):

 val = val * base

 exp-=1

 exp-=1

 #prints 8

 print(val)

main()

 #prints 8

 print(val)

 return val

main()

Functions may be called within the functions or functions may also be called within function calls in

fueleff_func.py we can see the function main calls the functions calcDistance, calcMpg,

calcTotalCost, and printCarInfo.

Conner Brooks

7/6/2012

An example that calculates fuel efficiency using functions.

#!/usr/bin/python

def main():

 #get input

 print("Space trip logging program.")

 makeCar = input('Please enter make and model of car ')

 startMiles = int(input('enter initial reading on the odometer '))

 endMiles = int(input('enter final reading on the odometer '))

 gallonsUsed = int(input('enter gallons of gas used '))

 pricePerGallon = float(input('enter price of one gallon of gas '))

 #calculate values

 distance = calcDistance(startMiles, endMiles)

 milesPerGallon = calcMpg(distance, gallonsUsed)

 totalPrice = calcTotalCost(pricePerGallon, gallonsUsed)

 #print values

 printCarInfo(makeCar, startMiles, endMiles, distance, milesPerGallon,

totalPrice)

def calcDistance(sMiles, eMiles):

 return eMiles - sMiles

def calcMpg(dist, gallons):

 return dist / gallons

def calcTotalCost(price, used):

 return price * used

def printCarInfo(make, start, end, dist, mpg, total):

 print('Make & Model: ' + make)

 print('Initial odometer reading: ' + str(start))

 print('Final odometer reading: ' + str(end))

 print('Distance traveled: ' + str(dist))

 print('MPG: ' + str(mpg))

 print('Total cost of trip: ' + str(total))

When using Pygame functions play a big role when it comes to taking a large problem and making it simpler to

code. For example using chessboard4.py there are multiple pieces to solve the problem of building a

chessboard instead of tackling the problem as a whole we can separate each piece and tackle the problem as

pieces opposed to a whole. In chessboard4.py the problem of getting the starting point of each individual

square is handling by the functions mapX and mapY, then the problem of actually drawing the square is

handled the function drawSquare.

Returns the x pixel value for square on row index.

def mapX(index):

 return 300 + 50*index

Returns the y pixel value for square on col index.

def mapY(index):

 return 100 + 50*index

Draws one square with top left corner (x,y) side length side and fills it

based on the boolean fill.

def drawSquare(x,y,side,fill):

 # Set the border based on the boolean variable fill.

 border = 2

 if fill:

 border = 0

 pygame.draw.rect(DISPLAYSURF, red, (x, y, side, side), border)

