If statement variant

So far we have seen the syntax of an if statement that allows us to execute two different sections of code, based on a single yes/no decision. However, we can think of cases where we would want more than 2 different sections of code. The classic example always given in beginning programming classes is that of assigning letter grades based on percentages for an exam. One of the standard grading scales is as follows:

Percentage

Grade
90 – 100

 A

80 – 89

 B

70 – 79

 C

60 – 69

 D

less than 60

 F

To handle situations like this, Java (as well as other programming languages) provides and if- else if construct. The general construct is as follows:

if (<bool_exp 1>) {

 stmts1;

}

else if (<bool_exp2>) {

 stmts2;

}

.

.

.

else if (<bool_expn>) {

 stmtsn;

}

else {

 stmts;

}

Here is how this construct gets executed:

1) Check if <bool_exp1> is true.

2) If so, execute the block of statements stmts1, and skip to the end of the if

 statement.

3) If not, check if <bool_exp2> is true.

4) If so, execute the block of statements stmts2, and skip to the end of the if

 statement.

5) Continue in this fashion, checking each subsequent boolean expression,

 until you hit the first one that is true. Execute the corresponding block

 of statements and then skip to the end of the if statement.

6) If none of the boolean expressions are true, execute the block of

 statements stmts under the else clause, and continue.

Note that you can have as many else if clauses as you want, and that the else clause is optional. If there is no else clause, there is a possibility that none of the blocks of statements inside of the if will get executed. If there is an else clause, exactly 1 block of statements inside the if clause gets executed.

Now, we are ready to write a small program that asks the user for a exam grade (in percent) and prints out the corresponding letter grade.

// Grade.java

// This program prompts the user for a percentage grade and prints out the

// corresponding letter grade.

public class Grade {

 public static void main(String args[]) {

 Scanner stdin = new Scanner(System.in);
 int score;

 char let_grade;

 // Read in percentage grade.

 System.out.println(“Enter the percentage you scored on the exam.”);

 score = stdin.nextInt();

 // First take care of invalid input.

 if (score > 100 || score < 0)

 System.out.println(“Sorry, that is not a valid percentage.”);

 else {

 // Check each possible case of letter grade.

 if (score >= 90)

 let_grade = ‘A’;

 else if (score >= 80)

 let_grade = ‘B’;

 else if (score >= 70)

 let_grade = ‘C’;

 else if (score >= 60)

 let_grade = ‘D’;

 else

 let_grade = ‘F’;

 System.out.println(“A “ + score + “ earns you a “ + let_grade);

 }

 }

}

As illustrated by this example, you are allowed to have an if statement inside of an if statement. The if structure can be “nested” in this manner as many times as you want. Furthermore, an important part of programming is error checking. Users will not always enter what you expect them to. A good programmer will try to anticipate the possible errors a user may make and write a program that handles these cases in a graceful manner. In this particular example, we can not compute a letter grade if the percentage score is not in between 0 and 100, inclusive. You will get more advice on error checking later in the class.

One other thing you might notice is that each boolean expression in the second if statement is a simple one. (For example we don’t have else if (score >=80 && score < 90).) The reason is this: If the score were greater than or equal to 90, then the first if clause would have been taken. Thus, if we come to this part of the code, we know that we ONLY have to check the lower score boundary, because we have already checked the upper one.

So, a natural question at this point is, what is the difference between an if – else if construction and the set of equivalent if statement constructions? Consider writing the second if-else if statement above with 5 if statements as follows:

if (score >= 90)

 let_grade = ‘A’;

 if (score >= 80)

 let_grade = ‘B’;

 if (score >= 70)

 let_grade = ‘C’;

 if (score >= 60)

 let_grade = ‘D’;

 if (score < 60)

 let_grade = ‘F’;

The problem here is if score was 100, each of the first four statements inside of the separate if statements would get executed. At the end of executing these five statements, let_grade would be equal to ‘D’. So, from this example, we see that the difference here is that more than one of the blocks of statements in each if clause can be executed, whereas in the if-else if construction, at most one block can be executed. Based on the situation, you have to design your program accordingly.

Before we finish this lecture, we must point out one difficulty with nesting if statements. This deals with the matching else problem. Consider the following code:

if (score <= 100 && score >=0)

 if (score >= 90)

 System.out.println(“You score an A.”);

else

 System.out.println(“That is not a valid score.”);

The way I have written this code, it appears as if the else matches the first if, not the second one. However, the compiler has no good way of telling which if the else matches. (As mentioned before, the compiler doesn’t understand English and can not figure out what we as humans were intending...) Thus, the rule used by the Java compiler is that all else’s, unless otherwise specified, match the nearest if. Thus, this piece of code is actually interpreted as follows:

if (score <= 100 && score >=0) {

 if (score >= 90)

 System.out.println(“You score an A.”);

 else

 System.out.println(“That is not a valid score.”);

}

To “fix” our matching else problem, we can be explicit by specifying blocks of code using braces:

if (score <= 100 && score >=0) {

 if (score >= 90)

 System.out.println(“You score an A.”);

}

else

 System.out.println(“That is not a valid score.”);

To always avoid these problems completely, always use braces to indicate blocks of code where you want them.

Switch Selection Structure

We have seen two separate loop control structures(while & for). Now, we will look at a selection control structure called a switch statement. Most tasks that can be performed by a switch can also be performed by an if. However, as is the case with the for loop, for certain tasks, a switch statement will be more clear and straighforward to use than an equivalent if structure.

Here is the general syntax of a switch statement:

switch (<variable>) {

case <value1>: <one or more stmts1>

 break;

case <value2>: <one or more stmts2>

 break;

.

.

.

case <valuen>: <oneormore stmtsn>

 break;

default: <one or more stmtslast>

}

Here is how to evaluate a switch statement of this format:

1) Evaluate the value of the variable listed in the beginning of the switch statement.

2) See if this value is listed under any of the cases. If so, execute all the statements listed under that particular case.

3) When you hit the break statement, skip to the end of the switch statement, right after the closing brace.

Note that the break statements are not necessary, but if you do not have them, the statement will execute in a different manner.We will discuss later in the lecture how omitting the break statements affects execution.

Here is a code segment that reads in a numerical grade on a quiz from the user and prints out the user’s letter grade.

int grade;

System.out.println(“Please enter your quiz grade(0,1,2,3,4).”);

grade = stdin.nextInt();

switch (grade) {

case 4: System.out.println(“You earned an A on the quiz.”);

 break;

case 3: System.out.println(“You earned an B on the quiz.”);

 break;

case 2: System.out.println(“You earned an C on the quiz.”);

 break;

case 1: System.out.println(“You earned an D on the quiz.”);

 break;

case 0: System.out.println(“You earned an F on the quiz.”);

 break;

default: System.out.println(“Sorry that is not a valid quiz grade.”);

}

System.out.println(“Thank you for using this grade conversion program.”);

In this code segment, if the user enters a 0, 1, 2, 3, or 4, then the switch statement will find the appropriate case, print out the single corresponding print statement, then skip to the end of the switch (because of the break statement) and print out the thank you line. If the user enters any other value, the default code will be executed, and then the statement will be finished & the thank you note will subsequently be printed.

One of the things we can notice from this example is that, unlike an if statement where we can specify any boolean condition, we can not in a switch statement. In fact, we can not even specify a range of values for one case. We CAN however, specify a list of several values for a single case. But since we can not specify a range of values for a case, typically the variable a switch statement is performed on will not be a float or a double.

Here is an example, similar to the last where a range of values is used for some of the cases:

int grade;

System.out.println(“Please enter your quiz grade(0-10).”);

grade =stdin.nextInt();

switch (grade) {

case 9,10 : System.out.println(“You earned an A on the quiz.”);

 break;

case 7,8 : System.out.println(“You earned an B on the quiz.”);

 break;

case 6 : System.out.println(“You earned an C on the quiz.”);

 break;

case 4,5 : System.out.println(“You earned an D on the quiz.”);

 break;

case 0,1,2,3 : System.out.println(“You earned an F on the quiz.”);

 break;

default: System.out.println(“Sorry that is not a valid quiz grade.”);

}

System.out.println(“Thank you for using this grade conversion program.”);

Essentially, if you want to execute the same set of statements for multiple values, simply list each of the values separated by commas in the switch statement construct.

One more note on the switch statement. It is not necessary to have a default case. The use of this case is similar to an else case in an if statement. It is optional, but if it is not present, there is a chance that no code in the construct will be executed.

Now, let us talk about the omission of the break statements. The break statement is what stops execution of the subsequent cases. So, if the breaks are not present, all the code in the cases following the “correct” case will be executed. Consider the following example.

int grade;

System.out.println(“Please enter your quiz grade(0-10).”);

grade = stdin.nextInt();

switch (grade) {

 case 9,10 : System.out.println(“You get a free lunch at Don Pablo’s.”);

 case 7,8 : System.out.println(“You get a free breakfast at Panera.”);

 case 6 : System.out.println(“You get a free Blizzard at DQ.”);

 case 4,5 : System.out.println(“You get free fries at Burger King.”);

 case 0,1,2,3 : System.out.println(“You get a free snickers bar.”);

 break;

 default: System.out.println(“Sorry that is not a valid quiz grade.”);

}

System.out.println(“Thank you for using this grade reward program.”);

In this example, if you entered a 9 or 10 for grade, the following would get printed to the screen:

You get a free lunch at Don Pablo’s.

You get a free breakfast at Panera.

You get a free Blizzard at DQ.

You get free fries at Burger King.

You get a free snickers bar.

Thank you for using this grade reward program.

In this example once the first print gets executed, the subsequent ones do as well, until a break statement is encountered. (It’s as if the rest of the labels are ignored.) Similarly, if entered a 6 for grade, the following would get printed out:

You get a free Blizzard at DQ.

You get free fries at Burger King.

You get a free snickers bar.

Thank you for using this grade reward program.
