Introduction to Computer Programming via Java
Programming

A computer programs is a set of instructions, essentially a recipe, for solving some specified problem. A programmer must figure out these steps exactly before embarking on writing a program that implements those steps. A computer can simply go through these steps much faster than a human being, thus, we have relegated many simple but tedious tasks (sorting employee records, for example) to computers. The programmer’s job, of course, is to dictate all the steps to the computer so it can reliably solve the given problem for any general set of data. Namely, the same program that sorts the employees for one company ought to be able to sort the employees for another company!

In this introductory course, we’ll learn some of the instructions provided by the Java programming language. We’ll learn enough so that we can write basic programs that can make calculations for us, such as mortgage payments, and allow us to play simple games, such as a text-based minesweeper.
Problem Solving

The general task of a programmer is often to solve some problem. Here are the six steps listed by the text that one needs to perform to do so:

1. Understand the problem

2. Dissect the problem into manageable pieces.

3. Design a solution.

4. Consider alternatives to the solution to refine it.

5. Implement the solution in a specific programming language.
6. Test the solution and fix any problems that exist.

Notice that steps 1 through 4 have nothing to do with writing programming code. Plenty of planning needs to occur before a programmer actually writes her programs. The better her plan is, the less time will be spent writing the program and the fewer mistakes it will have. This is the same approach used to solve problems regardless of what programming language is being used to implement the solution.

The Java Programming Language

Java was developed in 1995 be James Gosling who works at Sun Microsystems. Java's ability to execute programs on the WWW caused an initial buzz. However, the language has continued to gain in popularity because of its object-oriented design. This design is very well-suited for very large programming projects.

Many academics even feel that Java is an excellent first programming language to learn since Java teaches the concept of objects very well. Other languages, such as C, do not reinforce the concept quite as well.
A Java Program

// Dolphins.java

// Arup Guha

// 1/7/02

// A very simple Java program that prints to the screen.

public class Dolphins {

 public static void main(String[] args) {

 System.out.println("The Dolphins are in the playoffs!");

 }

}

The first four lines are comments. These are ignored by the Java compiler. They are simply there to provide information to the programmers reading the code.

The first real line of code

public class Dolphins {

specifies the class being defined. All Java code resides within classes, and each class must have a name. (Typically the class name is the same as the filename, in this case Dolphins.java.) Notice that the class as well as the main method encapsulates all of its own sub-code within brackets (braces, or {}). It’s important to always close your braces (that is, have the same amount of closing } brackets as opening { ones) otherwise you may get syntax errors when compiling.
The next line

public static void main(String[] args) {

defines the beginning of the main method. Each class can have one main method but it’s not required. Whatever is in the main method will be executed when the class is run; if there is no main method, nothing will execute.
Naturally, you are wondering what each of the following mean:

1) public

2) static

3) void

4) String[] args

These are all various modifiers being used to augment and describe the method in which they are acting, in this case main.

1) This simply means that the method is accessible outside of the class within which is resides. (By accessible, I mean that you can CALL the method from outside of the class.) Main must always be public; you’ll learn more about public/private methods later on.
2) Static is difficult to define without an in-depth discussion of objects. In a nutshell, all methods must reside in a class, but only some methods are specific or operate on objects (members) of the class in which they are defined. If a method does NOT operate on an object of the class, it is then static. Since main is not dependent on any object, it must be static. (We will discuss this term later.)

3) This just means that the method does not have a return value (technically, it returns nothing, AKA void. Other methods may return other object types, to be discussed later).

4) This is the parameter list to main. It contains an array of strings. When a class is executed, if any command line arguments are used these are directly passed to main. Not all methods need parameters, but main does.
Finally, System.out.println is the first actual line of executable code. This is a fairly simple method call that prints directly to the console. As long as you just have a string literal in between quotes as shown above, everything in between the quote gets printed to the screen with the exception of escape characters (anything preceded with a backslash; for example “\n” will print a new line, not an ‘n’, and “\t” will print a tab. To actually print a backslash, use two of them: “\\”. In the same manner, the backslash can be used to escape [or print] characters you couldn’t normally use, like a double quote inside the method arguments: System.out.println(“John said, \"here are some double quotes\"”) will print out John said, "here are some double quotes".)
Most lines of code terminate with a semicolon (“;”), excluding blocks like if/then or do/while.
Comments

Comments in Java work fairly simply and there are two main types: single line (//) or multiline (/* */). The single line comments are as they sound; after the // anything you type to the end of the line will be ignored by the compiler. Multiline comments begin with a /* and are then comments all the way up until the ending */. I am sure at some point in the summer I'll give you my spiel about the importance of comments and exactly what to put in them.

Identifiers and Reserved Words

Identifiers and Reserved Words are concepts that specify how objects, variables, and more can be named or titled in Java. Reserved words are just that; they are reserved for the language’s use only and CANNOT be used as the name of a class, member, or method. A list of Java's reserved words is on page 30 of the text. Java IS case sensitive, so upper and lower case letters are treated differently from each other. Identifiers for methods or members can be any length, but must be composed of letters, digits, the underscore (_), and the dollar sign ($), but cannot start with a digit. Clearly, as always, an identifier should be chosen such that it reveals the function of the variable it names without being too lengthy.

Whitespace

Whitespace refers to roughly anything that’s not program-specific text, but mainly new/blank lines, tabs/indentations, and spaces. For example, notice how in the sample program above there is a blank line in between the class definition and the main method; this is whitespace. Similarly, the fact that the actual System.out.println() call is indented (tabbed inward) a few spaces from the vertical when compared to the main method is also an example of whitespace. Whitespace serves to make program code more readable for humans and is completely ignored by computers—if you wanted, you could construct a computer program entirely on one line! But it’d be terribly confusing to read. Compare the following:

// Outputs "Hello, world!" and then exits

public class HelloWorld {

 public static void main(String[] args) {

 System.out.println("Hello, world!");

 }

}

versus

public class HelloWorld { public static void main(String[] args) { System.out.println("Hello, world!");}}

Which would you rather debug, read, and edit? Now think of hundred-line programs and really complex, multi-class applications—you’ll understand why whitespace is important.

Your programs for this class will be graded not only on functionality, but also on readability. This means don’t write code that squishes everything together on one line or doesn’t indent between blocks—use whitespace to your advantage in order to make distinctive parts of your program more clearly delineated.
Compilers and Interpreters

A compiler checks the syntax of a program and if that is correct, translates a high-level computer language program into some target language, often the machine code for a particular computer (similar to binary but not quite). This machine code file is the executable that is ready to run.

Java's compiler works a bit differently. Rather than translating Java into specific machine code, it translates the source code into Java bytecode, which is machine independent. That is why Java is known as being portable. A compiled Java program can be run anywhere, not just the computer it was compiled on.

When a Java program is run it is technically interpreted instead of just being executed. An interpreted program is run as follows: Some instructions are translated into machine code, then executed, then more instructions are translated into machine code and executed, etc. Thus the executable of a Java program truly does not exist. The Java compiler produces a file that must be interpreted in order to be executed. The clear benefit is that a compiled Java program can be run on any computer with a Java interpreter. The drawback is that interpretations are slower than execution because it includes translation of Java bytecode.

Syntax and Semantics

Syntax is the set of rules that dictates valid lines of code in a programming language. During compilation, all syntax rules are checked. A program will not compile if it is not syntactically correct. Most syntax errors will throw compile errors as discussed below.
Semantics define the meaning of a statement in a programming language. Unlike English where semantics may be ambiguous, in a programming language they must not be. Otherwise the computer would not be able to choose which interpretation the programmer had intended.

Errors

Types of Errors: compile time, run-time, logical

1) compile time: These errors are errors with syntax, meaning you forgot a semicolon, closing brace, or something like that.
2) run-time: Although the program has no syntax errors, when it actually runs, it produces some error that causes the program to halt suddenly. Not all runs of a program with run-time errors will cause the error to appear. Imagine a program that divides by a number entered by the user. If the user enters 0, then a run-time error will occur. But when the user does not do so, no error will occur. But this does not mean that the program is error free! Obviously in this case, the syntax of the program is correct but something is causing it to do something illegal, so proper error checks must be written into the code to prevent such problems from occurring (in this case, maybe a check to see if the number the user entered is 0 and, if so, ask for another number).
3) logical: Although the program compiles and runs to completion, it still may not do what the programmer had intended. These errors are logical errors. The programmer has correctly used the syntax of the language and has not caused the program to crash. However, the programmer’s statements are not executed as desired. This means the logic used to create the lines of code the programmer has produced are flawed; in other words, the algorithm is incorrect. Imagine writing a program that is supposed to take a number inputted by a user and divide it by 2, but instead it accidentally doubles the number. There’s no syntax errors and it doesn’t crash during run-time, but its logic is incorrect: it doesn’t halve the number properly.
More about System.out.println

So, far the only Java command we have learned is System.out.println. The syntax for the command is as follows:

System.out.println(<PUT A STRING LITERAL HERE>);

Technically, println is a method, which means that it’s a simple “subprogram” which performs a specified task. In this case, the task is to print some information to the screen. All methods have a name followed by a pair of matching parentheses, one open and one closed. It’s these parentheses that identify a command as a method call. The information to be printed to the screen must appear in between the parentheses as a string literal.

A simple definition of a string literal is simply anything in between double quotes, such as

“Hello World!”

When we specify this as the string literal for the println method, the following gets printed to the screen:

Hello World!
If we have two println commands in a row, such as the following:

System.out.println(“You say hello, ”);

System.out.println(“I say goodbye.”);

The corresponding output is as follows:

You say hello,
I say goodbye.
In particular, after a println command finishes, the “cursor” moves to the next line, so that whenever something else gets printed, it will start printing on the following line, all the way over on the left.

A natural question to ask is, “what if I don’t want the cursor advancing to the next line? Is there a command that implements this?” The answer is yes. The method that prints but doesn’t advance the cursor is print. Thus, the two lines of code:

System.out.print(“You say hello, ”);

System.out.println(“I say goodbye.”);

Produces the output
You say hello, I say goodbye.

If something were to be printed subsequent to this, it would start on the second line.

Since we specify a string literal with matching double quotes, we might as the question, “How do I print out a double quote if I want to?” Perhaps you want to print out:
Charlie said, “It is time to go now.”

Initially, you might try something like:

System.out.println(“Charlie said, “It is time to go now.””);

However, the problem with this call to println is that the compiler will think that the first quotation mark (i.e. string literal) truncates the string at the comma because the compiler always ends a string at the second instance of the string literal. So, we need some way to designate to the compiler the difference between a quotation mark that we want to print out and one that designates the beginning or end of a string literal.

We can differentiate the quotation marks that we want to print and those which we want to be string literals through escape sequences. An escape sequence is designated by a backslash (\) character inside of a string literal. Including a backslash before the quotation mark indicates to the compiler that an escape sequence is coming. Instead of considering the quotation mark as a string literal, it will print out the quotation mark instead. Note that the backslash is NOT printed. So, instead of calling the first line below which results in an error, we call the second. Notice that the backslashes are inserted before the quotation marks that we would like to print.

System.out.println(“Charlie said, “It is time to go now.”); //No
System.out.println(“Charlie said, \“It is time to go now.\””); //Yes
There are other escape sequences besides backslash. A list of these is included below:

Character

Escape Sequence
double quote

\”

backslash

\\

newline

\n

tab

\t

These are used exactly as the escape sequence for the double quote is used. Whenever you want to put one of these characters in a string literal, you must put the two character code, starting with a backslash, in its place.

A newline character simply advances the cursor to the next line. Essentially, a println statement is the same as a print statement where the last part of the string is a newline character. A tab moves the cursor several characters to line up with the next “column”, so to speak. Tabs are used to produce output in the form of a chart with rows and columns and space in between them. The best way to learn about all of these is to experiment and edit a simple program to try to use each of these.
