Programming

Problem Solving

The more general task of a programmer is often to solve some problem. Here are the six steps listed by the text that one needs to perform to do so:

1. Understand the problem

2. Dissect the problem into manageable pieces.

3. Design a solution.

4. Consider alternatives to the solution to refine it.

5. Implement the solution.

6. Test the solution and fix any problems that exist.

You've probably seen this list before, but it's good to review it at the beginning of an introductory class such as this. This is the same approach used to solve problems regardless of what programming language is being used to implement the solution.

The Java Programming Language

Java was developed in 1995 be James Gosling who works at Sun Microsystems. Java's ability to execute programs on the WWW caused an initial buzz. However, the language has continued to gain in popularity because of its object-oriented design. This design is very well-suited for very large programming projects.

Many academics even feel that Java is an excellent first programming language to learn. Java teaches the concept of objects very well. Other languages, such as C++, do not reinforce the concept quite as well.

A Java Program

// Dolphins.java

// Arup Guha

// 1/7/02

// A very simple Java program that prints to the screen.

public class Dolphins {

    public static void main(String[] args) {

        System.out.println("The Dolphins are in the playoffs!");

    }

}

The first four lines are comments. These are ignored by the Java compiler. They are simply there to provide information to those reading the code.

The first real line of code

public class Dolphins {

specifies the class being defined. All java code resides within classes, and each class must have a name. (Typically the file that stores a class is the classname.java, in this case Dolphins.java)

The next line

public static void main(String[] args) {

defines the beginning of the main method. Each class can have one main method. The code in this method specifies exactly what gets executed when a class is executed.

Naturally, you are wondering what each of the following mean:

1) public

2) static

3) void

4) String[] args

1) This simply means that the method is accessible outside of the class within which is resides. (By accessible, I mean that you can CALL the method from outside of the class.) Main must always be public.

2) Static is difficult to define without a in-depth discussion of objects. In a nutshell, all methods must reside in a class, but only some methods are specific or operate on objects of the class they are defined in. If a method does NOT operate on an object of the class, it is then static. Since main is not dependent on any object, it must be static. (We will discuss this term later.)

3) This just means that the method does not have a return value.

4) This is the parameter list to main. It contains an array of strings. When a class is executed, if any command line arguments are used these are directly passed to main.

Finally, system.out.println works somewhat similarly to printf in c. As long as you just have a string literal in between quotes as shown above, everything in between the quote gets printed to the screen.

Comments

Comments in Java work the exact same way as C. You can either use the // or the /* */ style comments. I am sure at some point in the semester I'll give you my spiel about the importance of comments and exactly what to put in them.

Identifiers and Reserved Words

Identifiers and Reserved Words also work fairly similar to C. A list of Java's reserved words is on page 30 of the text. Java IS case sensitive, so upper and lower case letters are treated distinctly. Identifiers can be any length, but must be composed of letters, digits, the underscore(_), and the dollar sign($), but must not start with a digit. Clearly, as always, an identifier should be chosen such that it reveals the function of the variable it names without being too lengthy.

White Space

Hopefully you learned how to use white space to make your programs readable in your C class. Your programs for this class will be graded not only on functionality, but also on readability.

Compilers and Interpreters

A compiler checks the syntax of a program and if that is correct, translates a high-level computer language program into some target language, often the machine code for a particular computer. This machine code file is the executable that is ready to run.

Java's compiler works a bit differently. Rather than translating Java into specific machine code, it translates the source code into Java bytecode, which is machine independent. That is why Java is known as being portable. A compiled Java program can be run anywhere, not just the computer it was compiled on. 

When a Java program is run it is technically interpreted instead of just being executed. An interpreted program is run as follows: Some instructions are translated into machine code, then executed, then more instructions are translated into machine code and executed, etc. Thus the executable of a Java program truly does not exist. The Java compiler produces a file that must be interpreted in order to be executed. The clear benefit is that a compiled Java program can be run on any computer with a Java interpreter. The drawback is that interpretations is slower than execution because it includes translation of Java bytecode.

Syntax and Semantics

Syntax is the set of rules that dictates valid lines of code in a programming language. During compilation, all syntax rules are checked. A program will not compile if it is not syntactically correct. 

Semantics define the meaning of a statement in a programming language. Unlike English where semantics may be ambiguous, in a programming language they must not be. Otherwise the computer would not be able to choose which interpretation the programmer had intended.

Errors

Types of Errors: compile time, run-time, logical

You should have gone over these in C, but here's a quick review:

1) compile time: These errors are errors with syntax.

2) run-time: Although the program has no syntax errors, when it actually runs, it produces some error that causes the program to halt suddenly. Not all runs of a program with run-time errors will cause the error to appear. Imagine a program that divides by a number entered by the user. If the user enters 0, then a run-time error will occur. But when the user does not do so, no error will occur. But this does not mean that the program is error free!

3) logical: Although the program compiles and runs to complettion, it still may not do what the programmer had intended. These errors are logical errors. The programmer has correctly used the syntax of the language and has not cause the program to crash. However, the programmers statements are not executed as desired. This means the logic used to create the lines of code the programmer has produced are flawed.

