Creating Objects

A variable in Java can store one of two things:

1) a primitive value

2) a reference to an object

Thus in Java, when you declare an object reference, such as

String name;

you are NOT creating a String object. (A reference is a pointer!!!)

In order to actually create a new object, you must instantiate one. In Java, this means using the new operator, which calls the constructor for the class.

A constructor is a method that every class must have. It's job is to create and initialize an object. Here is an example of a call to the constructor in the String class:

String name = new String("Julia Stiles");

All calls to constructors are of the form new

<Classname>(<parameter list>);

Often times, constructors are overloaded. This means there are multiple constructors, each of which take in different parameters. You must choose the constructor appropriate to create the object that you want to. In this example, the standard String class constructor takes in a String object. In this example, that object is a String literal.

Once you have created an instance of an object, you can mutate (change) that specific object by calling methods on that object. All methods that are called on specific objects are instance methods or non-static methods.
In a sentence, the term static means "belongs to the class" and the term non-static means "belongs to the object." Thus, a static method is one that does not operate on any specific object, but simply belongs to the class.
Here is an example of a method call on the object we just created:

name.toLowerCase();

What this will do is change the String object name so that all of its uppercase letters are changed to their lowercase equivalents. Thus, if I now did:

System.out.println(name);

julia stiles

would get printed to the screen.

Here is a list of methods in the String class:

String(String str); //constructor

char charAt(int index);

int compareTo(String str);

String concat(String str);

boolean equals(String str);

boolean equalsIgnoreCase(String str);

int length();

String replace(char oldChar, char newChar);

String substring(int offset, int endIndex);

String toLowerCase();

String toUpperCase();

Class Libraries and Packages

There are many, prewritten Java classes for you to use, just like the String class. Groups of these classes that are related are put into packages. For example, the String class is included in the java.lang package. Normally, when you use a prewritten java class, you must import the corresponding class. (This is essentially the same as an #include in C.) However, the java.lang package is automatically included to use for every java program. That is why no import statement appears in the code we just looked at.

However, let's say for example that you wanted to create a Random object, which will help you generate random numbers. This class appears in the java.util package. In order to use this class you would have to include one of the two following statements in your code:

import java.util.*;

OR

import java.util.Random;

The first statement imports the whole java.util package which contains the Random class AND other classes, whereas the second statement JUST imports the Random class itself.

The general rule of thumb that I use is if I am only using one class from a package, I will only import that class. Otherwise I will import the package. (I believe your program will be more efficient the less unnecessary stuff you import.)

The Random Class

Here are some commonly used methods in the Random class:

Random(); //constructor

float nextFloat();

int nextInt();

For most programs you need to generate random numbers, creating a Random object and making calls to the two other methods listed above should be sufficient. Generally in most programs you only want to create one instance of a Random object:

Random gen = new Random();

Once you have done this, for the rest of your program you can simply call the nextFloat() or nextInt() method on the gen object. Each call will return a random float in between 0 and 1 or a random int in between -231 and 231 + 1.

If you need to generate random numbers within some method, you can either create a Random object in that method OR you can simply pass a random number generator in as a parameter to that method.

Next class I will show you an example of a Java program with random number generators.

One more String Example

public class StringTest {

 public static void main(String[] args) {

 String test1 = new String("Happy Birthday");

 String test2, test3, test4;

 test2 = test1.concat(" Trisha!");

 System.out.println("test1 = "+test1);

 System.out.println("test2 = "+test2);

 test3 = test1.replace('H', 'M');

 test3 = test3.replace('a', 'e');

 test3 = test3.replace('p', 'r');

 System.out.println("test1 = "+test1);

 System.out.println("test3 = "+test3);

 test4 = test2.substring(11, 20);

 System.out.println("test2 = "+test2);

 System.out.println("test4 = "+test4);

 }

}

Output:

test1 = Happy Birthday

test2 = Happy Birthday Trisha!

test1 = Happy Birthday

test3 = Merry Birthdey

test2 = Happy Birthday Trisha!

test4 = day Trish

Invoking Class Methods (Static)

Sometimes methods inside of a class are NOT specific to an object of the class, but simply pertain to the class itself. In order to call these methods, you do NOT need to call them on an object of the class. Rather, you may call them simply my specifying the class in which they reside.

For example, here are the prototypes of some methods from the Math class, (which is part of the java.lang package.)

static int abs (int num);

static double cos(double angle);

static double ceil(double num);

static double exp(double power);

static double pow(double num, double power);

static double random();

static double sqrt(double num);

Since these methods are static they do not need to be called on an object of the class. Instead, they are called by the class, as follows:

Classname.method(<parameters>)

Here is an example:

System.out.println("The square root of 15 is "+Math.sqrt(15));

All of these methods do NOT operate on an object, but rather carry out some generic task, (like a C function.)

