Break and Continue Statements

Two statements associated with loops are the break and continue statements. Each can be placed in a loop, and affect the code that gets executed in that loop. If you want to skip to the end of a for structure, a while structure, a do-while structure or a switch structure, you can use a break statement. Here is a general example of the syntax of a break statement in a loop:

loop structure {

 stmt1;

 stmt2;

 ...

 if (<bool exp>)

 break;

 stmtn;

 ...

}

stmtx;

Basically, the loop continues as normal as long as the boolean expression inside the if statement is false. However, if this boolean expression is evaluated as false, then the break statement gets executed. This means to skip the rest of the loop and immediately skip to the first statement outside of the loop’s parentheses. In this situation, that would be stmtx.

A break only breaks you out of the “inner-most” looping structure. Thus, if you were in nested loops and used a break, you would still be “inside” the outer loop. Here is a specific example:

for (int i=0; i<m; i++) {

 System.out.println(“Enter the number of pieces of data in your next set.\n”);

 int n = Integer.parseInt(stdin.readLine());

 for (int j=0; j<n; j++) {

 System.out.println(“Enter the next piece of data.\n”);

 int x = stdin.nextInt();

 if (x < 0)

 break;

 }

 System.out.println(“Thank you for entering that set of data.\n”);

}

Even if you entered a –1 for your first prompt, the bottom println would still be executed, and the outer loop(with index variable i) would still continue running.

There is also a way to break out of multiple loops. But since the computer can not guess how many loops to break out of, a label system must be used in this case. Typically, these types of break statements are discouraged because they are difficult to trace through.

Finally, a quick word about the continue statement. If you want to halt execution of the current iteration of a loop and start with the next iteration, use a continue statement. Here is a form of the general syntax:

loop structure {

 stmt1;

 stmt2;

 ...

 if (<bool exp>)

 continue;

 stmtn;

 ...

}

In this situation, the loop runs as normal until the boolean expression in the if statement becomes true. When this occurs, the continue get executed. This means that all the statements from stmtn on do NOT get executed. Rather, the beginning of the loop is started on the next iteration. Keep in mind that continues are rarely used. Here is an example using a continue:

for (int skip5=1;skip5<11;skip5++) {

 if (skip5 == 5)

 continue;

 System.out.println(skip5);

}

This prints out the following:

1

2

3

4

6

7

8

9

10

We have now gone over all the loop syntax that we will be using in this class. A natural question is: how do I know which loop to use? The answer is that often times, it does not matter. Each programmer chooses different loops for implementing algorithms. Some programmers always use while loops while others try to use for loops as much as possible. The best advice is to use the loop that seems easiest to you. Here are some general tips if you are confused:

1) If you know exactly how many times you are going to execute a piece of code, use a for loop. For loops are good counters since you can use an index variable to keep track of which loop iteration you are on.

2) If you don’t know how many iterations you are going to run your loop, but whether the loop will run another iteration is based on a boolean value you can check, use a while loop.

3) For virtually any loop that doesn’t involve “counting” a while loop is usually the most straightforward choice.

Consider the program below that executes a guessing game:

import java.util.*;

import java.lang.Math;

import java.io.*;

class GuessingGame {

 public static void main(String argv[]) throws IOException {

Scanner stdin = new Scanner(System.in);

Random x = new Random();

int secretnumber = Math.abs(x.nextInt()) % 100;

int guess = 0; // Keeps track of current guess

int low = 1; // Computer uses this variable to make next guess

int high = 100; // Computer uses this variable to make next guess

// Loops until correct number is guessed.

while (secretnumber != guess) {

 System.out.println(“Enter your next guess!\n”);

 guess = stdin.nextInt(); // Gets guess

 // Prints out appropriate message based on number guessed.

 if (guess > secretnumber) {

System.out.println("Sorry, your guess is too high.”);

 System.out.println(“Please guess again.”);

 }

 else if (guess < secretnumber) {

System.out.println("Sorry, your guess is too low.);

 System.out.println(“Please guess again.”);

 }

}

System.out.println("Congrats, you guessed the correct number, "+secretnumber);

 }

}

The way this program works is by looping until the number guessed by the user is equal to the secret number. (For now, don’t worry about how the secret number is chosen in the code above.) For each incorrect guess, in the body of the while loop an appropriate message is printed for the user so they can refine their guess. Finally, when the user guesses the correct number, we exit the loop and print an appropriate message. Here, since we didn’t know how many guesses were going to be made, a while loop was a natural choice.

Now consider the task of printing out a multiplication table for the times tables from 1 to 10. Since we know exactly how many rows and columns are going to be in our table, it makes sense to use a for loop:

import java.io.*;

class Multiplication {

 public static void main(String argv[]) throws IOException {

int i, j;

// Prints out labels for each column of mult. table

System.out.println(“X\t”);

for (i=1; i<11; i++)

 System.out.print(i+”\t”);

// Prints out the rest of the table.

System.out.println();

for (i=1; i<11; i++) {

 System.out.print(i+”\t”);

 // Prints out ith row of the table.

 for (j=1; j<11; j++)

 System.out.print((i*j)+”\t”);

 System.out.println();

}

 }

}

So here, since we had to print out 10 rows of 10 values each, we had to use nested for loops. The inner loop printed out a single line, while the other loop controlled which line was currently being printed.

