Data Types and Variables

One of the reasons computers are so powerful is because they manipulate and store information. We need a precise way to store information. Examples of specific types of information are characters, integers, and real numbers. In fact, these are the main types of pieces of information that computers handle. It would make sense that a computer would require different amounts of space to store different types of information. Thus, a programmer must always specify what type of information he/she would like to store.

In Java, there are several primitive (or built-in) data types. Some of these are int, double, char, and boolean. Here is what each of these types store:

int: Stores a single integer in between –231 (–2,147,483,648) and 231 – 1 (2,147,483,647).

double: Stores a real number [e.g. 0.5, 1.337, -42.0, π]

char: Stores a single character. Most characters are keys on the keyboard, however there are some other special characters that do not appear on the keyboard.

boolean: Stores a single true or false value.

In Java, (as in most other programming languages), data of any type must be stored in a variable. To use a variable in a Java program, you must first declare the variable. Here is how to declare an integer variable:

int myfirstvar;

In general, you declare a variable by first stating its type, then its identifier name. In this example, the identifier is myfirstvar. For the rest of the program, to refer to this variable, you simply use the identifier name. The same rules apply for naming variables as for naming any identifier, as mentioned before.

Assignment Statement

By itself, a variable does little. We need a way to manipulate the value of a variable. One way to do this is to use an assignment statement. In Java, the assignment operator is the equal sign(=). Let’s say we want to assign the variable myfirstvar the value 5. The correct Java syntax for this is as follows:

myfirstvar = 5;

The general syntax of an assignment statement is as follows:

<variable> = <expression of the same type as the variable>

The left hand side of an assignment statement MUST BE a variable. (Hence 5, which is a integer literal or constant can not appear on the left hand of an assignment statement.) But the right hand side of an assignment statement can be any expression that evaluates to the same type as the variable. (We can not set an apple equal to an orange!!!)

Arithmetic Expressions

The most common type of expressions we will deal with are arithmetic expressions. An arithmetic expression is a group of numbers, operators and variables that evaluates to a number. First, let’s go over the valid operators in Java:

1) + (adds two values)

2) – (subtracts the second value from the first one)

3) * (multiplies two values)

4) / (divides the first value by the second value)

5) % (computes the modulus when you divide the first value by the second one.)

In Java, as in most programming languages, arithmetic expressions are written in standard infix notation. You are probably familiar with the first four of these operations. The fifth operation is a “remainder operation”. Often times when we divide one integer by another we are interested in the remainder that is left. The % operator calculates this. Here are a few examples:

17 % 3 evaluates to 2, since 17 = 5*3 + 2

19 % 7 evaluates to 5, since 19 = 2*7 + 5

42 % 6 evaluates to 0, since 36 = 7*6 + 0

Now, there are a couple tricky cases dealing with the % operator. It is possible for one or both of the operands to be negative. Also, you are technically allowed to have real numbers as operands. Here are two examples that show how real numbers are handled:

13.5 % 2.3 evaluates to 2.0 since 13.5 = 5*2.3 + 2.0

17.6 % 9.8 evaluates to 7.8 since 17.6 = 1*9.8 + 7.8

The key thing to remember here is that whenever you are dealing with positive numbers, the result of a % operation will lie in between 0 and the second operand, (though it can never be equal to the second operand.)

Now, to deal with negative numbers.

When the first operand is less than 0, then the result of a % operation will lie between the negative value of the second operand and 0, (again, it can never be equal to the negative value of the second operand). In other words, the result will negative or 0. The sign of the second operand does not matter when taking the modulus. In most cases, we are interested in the positive value of the result. So, to ‘fix’ this, we can take a negative answer and add the second operand to it to make the result positive, and this will be the equivalent positive remainder. Try these examples to convince yourself it’s true!

-3 % 2 evaluates to -1 since -3 = -1*2 – 1

-1 + 2 = 1, so -3 % 2 is also equivalent to 1, since -3 = -2*2 + 1

-17 % 5 evaluates to -2 since -17 = -3*5 – 2

-2 + 5 = 3, so -17 % 5 is also equivalent to 3, since -17 = -4*5 + 3

-17.6 % 9.8 evaluates to -7.8 since -17.6 = -1*9.8 – 7.8

-7.8 + 9.8 = 2.0, so -17.6 % 9.8 is also equivalent to 2.0, since

-17.6 = -2*9.8 + 2.0

17 % -7 evaluates to 3, since 17 = -2*-7 + 3

Also, the division operator(/) can be confusing sometimes. There are two types of division – integer division and real number division. Based on the type of the operands, the computer picks which type of division to use. If both of the operands are integers (either ints or longs), the computer does an integer division. Otherwise, it will do a real number division. A real number division is what you are used to. (7.2/3.2 = 2.25 is a real number division.) However, whenever you divide two integers, the answer you obtain must also be an integer. So, for example, in Java, 11/4 evaluates to 2, not 2.75. (Integer division always truncates the final answer.) If you do not want to perform an integer division, there is a simple solution to make the computer perform a real number division. This involves casting, which will be discussed later.

Order of Operations

Also, a standard order of operations is applied. Without such a standard, it would be impossible to interpret

3 + 2*5

in a consistent manner. (We could either say 3 + 2*5 = 3 + (2*5) OR (3+2)*5, which give us two different answers.) Basically, we will evaluate an expression from left to right except that we will perform all operations in the following manner:

1) All parenthesized expressions

2) *, /, %

3) +, -

Here is an example illustrating each of these rules:

(3 – 4)*6 + 7*(3 + 4) – 28/(8 – 4) evaluates to 36.

(-1)*6 + 7*7 – 28/4 evaluates to 36

-6 + 49 – 7 which evaluates to 36

43 – 7 which evaluates to 36

In any meaningful computer program, our arithmetic expressions will not only contain literal values, but also contain variables. So, if we had an expression such as

3 + 2*myfirstvar + (6 + 4)/5

on the left hand side of an assignment statement, we evaluate it using the rules I have stated, keeping in mind that we must substitute the current value of myfirstvar in order to fully evaluate the expression. Thus, if myfirstvar was equal to 10 when this expression was being evaluated, this would simplify to 25.

Of course, it is not very meaningful in a Java program just to have an arithmetic expression. That expression must be part of a statement, such as an assignment statement. So, for example the following is a valid segment of Java code:

int myfirstvar;

myfirstvar = 5;

myfirstvar = 3 + 2*myfirstvar + (6+4)/5;

Although this prints nothing to the screen, the computer does do something when executing these lines of code. Here is what happens:

The first line creates a space in memory to store an integer. This space is labeled with the identifier name myfirstvar. Since no value is assigned to myfirstvar, it could be equal to any random value, at this point. Here is a corresponding picture:

myfirstvar | |

The second line initializes the value of myfirstvar. Technically this is an assignment statement. First, the expression on the left hand side is evaluated. (This one’s easy – it evaluates to 5.) Then this value is assigned to the variable myfirstvar. Thus, whatever value was stored in the variable before is effectively erased, and 5 is written over it. Here is the corresponding picture:

myfirstvar | 5 |

The third line is also an assignment statement. The left hand side of the statement evaluates to 15 (if you substitute 5 for myfirstvar). Thus, this will become the new value of myfirstvar, and the value 5 is no longer stored anywhere:

myfirstvar | 15 |

Now we have seen some tools that help us declare and manipulate variables. However, this does not help us very much unless we can find a way to communicate the results of these changes to the user through output. Also, without letting the user give a program different inputs, we vastly compromise the power of our programs. In the next lecture we will look at input and output, and how to format output.

Data Conversion

If you have statements with mixed types of data, sometimes the types of some values are converted automatically. Here are the types of conversions possible:

1) assignment conversion

2) arithmetic promotion

3) casting

Assignment conversion

Example:

int dollars;

double money;

money = dollars;

In this example, even though money and dollars are not the same type, the assignment is allowed. What occurs is that the integer value of dollars is converted to an equivalent double value. Since this is a widening conversion (one where no data is lost), it is allowed. The opposite, a narrowing conversion as indicated by the assignment statement

dollars = money;

would not be allowed in Java.

Arithmetic Promotion

In any arithmetic operation dealing with two different type operands, a promotion is temporarily done to execute the operation. Here is an example:

int a;

double x;

System.out.println("Answer = "+(x+a));

When this statement is executed, while x+a is being evaulated, a is temporarily converted to an equivalent double. But, after the statement, a remains an integer.

Casting

You can also force an expression to act as a different type temporarily during a statement using a cast. Consider the following statements:

int sum, num;

double avg;

...

avg = (double)sum/num;

Even though sum is an integer, temporarily, for the sake of evaluating the division(/), it will act as a double. This in turn invokes a floating pt. division instead of an integer division. Once again, after the statement, sum remains an integer.

