
Recursion

Mathematically, a recursive function is one that is defined in

terms of other values of that same function. A couple

(overused) examples are as follows:

Fibonacci numbers:

F(0)=0, F(1)=1, F(n) = F(n-1)+F(n-2), for all n>1. (F is defined

for all non-negative integers here.)

Factorials:

Fact(0) = 1, Fact(n)=n*Fact(n-1), for all n>0. (Fact is also

defined for all non-negative integers.)

Analogously, a recursive method is one where the method body

contains a call to the method itself. (Remember, each instance a

method is called, the computer allocates some memory for

THAT instance to run. There is no reason why two

DIFFERENT instances of the same method can not be in the

middle of running at the same time.)

Incidentally, here are Java methods that compute the two

recursive functions listed above:

public static int Fib(int n) {

 if (n<2)

 return n;

 else

 return Fib(n-1)+Fib(n-2);

}

public static int Fact(int n) {

 if (n ==0)

 return 1;

 else

 return n*Fact(n-1);

{

What would make both of these methods more robust?

What problem becomes more probable with recursion?

When dealing with recursion, there are essentially two issues to

tackle:

1) How to trace through recursive code.

2) How to write recursive code.

Tracing through recursion

Clearly, the first is easier than the second, and you can't do the

second if you can't do the first. So, let's talk about tracing

through recursion first.

Really, there are no NEW rules to use when tracing through

recursion, as compared to tracing through code that has

method calls. Anytime a new method is called, you checkpoint

and STOP running the calling method, and start executing the

callee method. When the callee has terminated, it returns a

value to the caller, and then the caller continues execution

EXACTLY where it left off.

The stack trace illustration in many intro CS books uses is a

fairly good model to use when tracing recursion. I often

explain a trace using a physical stack of papers, where each

paper is allowed to keep track of one method call. Let's trace

through a couple simple examples of the two functions above.

Writing recursion

The toughest part with writing a recusive method ISN'T

coding the method. Rather, the most difficult part is coming up

with the recursive algorithm to solve the problem. Once you

come up with the idea for the algorithm, the actual code is not

so difficult to write. (As you can see, the mathematical

definition of both fibonacci and factorial look amazingly

similar to the code. Once you can get this mathematical

definition, the code is not far off.)

The most difficult part of creating a recursive algorithm is

finding a way to solve the given problem that involves a

solution to a problem of the exact same nature. In both the

Fibonacci and Factorial examples, the functions themselves are

defined recursively, so we don't have that problem. Here is a

problem that is not typically defined recursively:

Find the sum 1+2+3+...+n.

Your natural inclination is probably to write a loop to

determine this sum. In order to come up with a recursive

solution, you first have to think of a mathematical way to

express the function above, recursively.

The big key is that 1+2+3+... = n + (1+2+3...+n-1)

Thus, if we let s(n)=1+2+3+...+n, then we can derive that

s(n) = n + s(n-1), for all n>1, s(1)=1.

Now using the information above, the recursive method that

computes the function s above is apparent.

Once you have found a recursive algorithm to solve a problem,

there is one other main issue to consider before coding a

recursive method: For what values should the recursive

algorithm be executed, and for what values should it NOT be

executed, because the value to return can be easily computed?

This is known as the terminating condition. All recursive

methods have to have a terminating condition in some shape or

form. If they didn't, you would get infinite recursion. (This is

very similar to an infinite loop.)

There are two basic constructs that most recursive methods

take. Here they are:

if (terminating condition)

 finish task

else

 solve problem recursively

if (not terminating condition)

 solve problem recursively

One other way to view coding a recursive problem is the

following:

Imagine that you have been asked to write a method, but that

someone else has already written the method and you are

allowed to make as many calls to THAT method that you want

to, as long as you don't pass it the same parameters that have

been passed to you.

Thus, when computing Fact(n), for example, instead of doing

all that multiplying yourself, you call the function your friend

has written to calculate Fact(n-1). When he/she returns that

answer to you, all you have to do to finish your job is multiply

that answer by n and you are done!!!

Recursive Binary Search

A binary search is when we are given a sorted array and asked

to find if a value is stored in that array. To write this

recursively, we have to add two parameters to our method: the

low index of our search and the high index of our search. Thus,

the goal of our method is as follows:

Given a sorted array vals, a low index low, a high index high

and a target t, determine if t is stored within the sub-array

vals[low….high].

Here the key is that we have two terminating conditions:

having no search space, and if the middle element (the one that

is stored in the index halfway between index low and index

high) is the target.

After that, based on our comparison with the middle element,

we can make one of two recursive calls for a search in either

the lower or upper half of the array.

public static boolean search(int vals[], int low, int high, int t) {

 if (low > high)

 return false;

 int mid = (low+high)/2;

 if (vals[mid] == t)

 return true;

 else if (vals[mid] < t)

 return search(vals, mid+1, high, t);

 else

 return search(vals, low, mid-1, t);

}

Introduction to Towers of Hanoi

The story goes as follows: Some guy has this daunting task of

moving this set of golden disks from one pole to another pole.

There are three poles total and he can only move a single disk

at a time. Furthermore, he can not place a larger disk on top of

a smaller disk. Our guy, (some monk or something), has 64

disks to transfer. After playing this game for a while, you

realize that he's got quite a task. In fact, he will have to make

264 - 1 moves total, at least. (I have no idea what this number is,

but it's pretty big...)

Although this won't directly help you code, it is instructive to

determine the smallest number of moves possible to move these

disks. First we notice the following:

It takes one move to move a tower of one disk.

For larger towers, one way we can solve the problem is as

follows:

1) Move the subtower of n-1 disks from pole 1 to pole 3.

2) Move the bottom disk to pole 2.

3) Move the subtower of n-1 disks from pole 3 to pole 2.

We can now use this method of solution to write a function that

will print out all the moves necessary to transfer the contents

of one pole to another. Here is the prototype for our function:

public static void towers(int n, int start, int end);

n is the number of disks being moved, start is the number of

the pole the disks start on, and end is the number of the pole

that the disks will get moved to. The poles are numbered 1 to 3.

Here is the function:

public static void towers(int n, int start, int end) {

 if (n > 0) {

 int mid = 6 - start - end;

 towers(n-1, start, mid);

 System.out.print("Move disk "+n+" from tower ");

 System.out.println(start+" to tower "+end+".");

 towers(n-1,mid,end);

 }

}

Recursive Problem to Solve

Write a recursive method to return the sum of the digits of a

non-negative integer n.

// Precondition: n >= 0.

public static int sumDigits(int n);

